Since Maria is going to put a trim around a triangle-shaped banner with 22 inches long per side, this means that for the banner, it has a total length of 66 inches. 66 inches would be equal to 5.5 foot. This means that the total length of the trim from the start is 7 foot. Hope this helps.
Let p(x) be a polynomial, and suppose that a is any real
number. Prove that
lim x→a p(x) = p(a) .
Solution. Notice that
2(−1)4 − 3(−1)3 − 4(−1)2 − (−1) − 1 = 1 .
So x − (−1) must divide 2x^4 − 3x^3 − 4x^2 − x − 2. Do polynomial
long division to get 2x^4 − 3x^3 − 4x^2 – x – 2 / (x − (−1)) = 2x^3 − 5x^2 + x –
2.
Let ε > 0. Set δ = min{ ε/40 , 1}. Let x be a real number
such that 0 < |x−(−1)| < δ. Then |x + 1| < ε/40 . Also, |x + 1| <
1, so −2 < x < 0. In particular |x| < 2. So
|2x^3 − 5x^2 + x − 2| ≤ |2x^3 | + | − 5x^2 | + |x| + | − 2|
= 2|x|^3 + 5|x|^2 + |x| + 2
< 2(2)^3 + 5(2)^2 + (2) + 2
= 40
Thus, |2x^4 − 3x^3 − 4x^2 − x − 2| = |x + 1| · |2x^3 − 5x^2
+ x − 2| < ε/40 · 40 = ε.
A reflection over the line y=x implies exchanging the x and y coordinates of a point. For example if you take a generic point (a,b) then its reflection over y=x is (b,a). Our point is (-1,3) so its reflection over y=x is the point (3,-1).
Then we have to translate it two units left. Translating a point left means that we are moving towards negative x values so we need to substract 2 from the x coordinate:

Finally we have to translate it 1 unit up towards positive y values so we have to add 1 to its y coordinate:

And these are the final coordinates. In the following picture you have the points you get after each step (from A to D) with the y=x line in blue: