No, 0.7 is greater than 0.09
0.70 > 0.09
hope this helps
P(picking one defective) = 3/10
P(picking a 2nd defective) = 2/9
P(1 and 2 defective) = 3/10 x 2/9 = 6/90 = 0.066
Second method using combination:
³C₂ / ¹⁰C₂ = 1/15 = 0.066
Distribute the h:
h(h+4)
h*h + 4*h
h² + 4h
Hope this helps!
Answer:
1 / 9
Step-by-step explanation:
Given the number cube :
(11,12,11,12,20,20)
Spinner : (G, H, J)
Probability = required outcome / Total possible outcomes
P(20) = 2 / 6 = 1/3
P(H) = 1 / 3
P(20 and H) = P(20) * P(H) = 1/3 * 1/3 = 1 /9
Answer:
5 people trust none of the candidates
Step-by-step explanation:
To know how many people surveyed trust none of the candidates we need to find:
- People that trust all three candidates: 5
- People that just trust candidate B and C: This is equal to people that trust candidate B and C less people that trust all three candidates. So it is equal to: 17 - 5 = 12
- People that just trust candidate A and C: This is equal to people that trust candidate A and C less people that trust all three candidates. So it is equal to: 12 - 5 = 7
- People that just trust candidate A and B: This is equal to people that trust candidate A and B less people that trust all three candidates. So it is equal to: 7 - 5 = 2
- People that just trus candidate C: This is equal to the people that trust candidate C less people that just trust candidate B and C less people that just trust candidate A and C less people that trust all three candidates. So, it is equal to: 48 - 12 - 7 - 5 = 24
- People that just trus candidate B: This is equal to the people that trust candidate B less people that just trust candidate B and C less people that just trust candidate A and B less people that trust all three candidates. So, it is equal to: 44 - 12 - 2 - 5 = 25
- People that just trus candidate A: This is equal to the people that trust candidate A less people that just trust candidate A and C less people that just trust candidate A and B less people that trust all three candidates. So, it is equal to: 34 - 7 - 2 - 5 = 20
Therefore, we can calculate how many people surveyed trust at least one candidate by the sum of the previous quantities as:
5 + 12 + 7 + 2 + 24 + 25 + 20 = 95
Finally, there are 100 people surveyed and 95 people trust at least one candidate, so 5 people trust none of the candidates.