Stratus clouds reside below the 6,000ft range.
Altocumulus clouds reside in the 6,500-20,000ft range.
Cirrus clouds reside above the 20,000ft range.
Ordered from highest to lowest, the sequence of clouds will be:
Cirrus
Altocumulus
Stratus
I think this the the list of choices relating to the above question.
reaction rate
<span>activation energy </span>
<span>collision theory </span>
<span>spontaneous reaction
</span>
The term that best relate to ben's observation is REACTION RATE.
Reaction rate is defined as the speed at which the chemical reaction proceeds. It either is the amount of concentration of a product in a given unit of time or the concentration of the reactant that is being consumed in a unit of time.
Answer:
The smell of a chocolate is from the presence of volatile compounds present in the chocolate bar which at room temperature readily changes phase from solid to liquid to vapor or gas
Explanation:
There are nearly 600 identified compounds present in a chocolate bar and out of these, there are volatile components which gives the chocolate bar its distinctive aroma.
These volatile chocolate contents readily change phase from solid to vapor, with very short duration liquid phase.
For example, 3 methylbutanal, vanillin, and several organic compounds which are known to be readily volatile.
Answer:
pH = 12.15
Explanation:
To determine the pH of the HCl and KOH mixture, we need to know that the reaction is a neutralization type.
HCl + KOH → H₂O + KCl
We need to determine the moles of each compound
M = mmol / V (mL) → 30 mL . 0.10 M = 3 mmoles of HCl
M = mmol / V (mL) → 40 mL . 0.10 M = 4 mmoles of KOH
The base is in excess, so the HCl will completely react and we would produce the same mmoles of KCl
HCl + KOH → H₂O + KCl
3 m 4 m -
1 m 3 m
As the KCl is a neutral salt, it does not have any effect on the pH, so the pH will be affected, by the strong base.
1 mmol of KOH has 1 mmol of OH⁻, so the [OH⁻] will be 1 mmol / Tot volume
[OH⁻] 1 mmol / 70 mL = 0.014285 M
- log [OH⁻] = 1.85 → pH = 14 - pOH → 14 - 1.85 = 12.15
Answer:
v = 23.96 cm³
Explanation:
Given data:
Mass = 15.0 g
Density = 0.626 g/cm³
Volume = ?
Solution:
Formula:
D=m/v
D= density
m=mass
V=volume
Now we will put the values in formula:
d = m/v
v = m/d
v = 15 g / 0.626 g/cm³
v = 23.96 cm³