Answer:
volume of
required=20.1 ml
Explanation:
First calculate the number of mole of
,
given mass of
=23.4 gram ⇒this is the required mass to produce 40 gram silver chromate
molecular weight=194g/mol

mole=0.121 mol
molarity is given and we have also calculated the mole so we will use the relation between molarity,volume and mole i.e.


volume in L=0.0201 lire
volume of
required=20.1 ml
The unknown of this problem is the experimental percent of water in the compound in order to remove the water of hydrogen, given the following:
Mass of crucible, cover and contents before heating 23.54 g
Mass of empty crucible and cover 18.82 g
Mass of crucible, cover, and contents after heating to constant mass 20.94 g
In order to get the answer, determine the following:
Mass of hydrated salt used = 23.54 g – 18.82 g = 4.72 g
Mass of dehydrated salt after heating = 20.94 g – 18.82 g = 2.12 g
Mass of water liberated from salt = 4.72 g – 2.12 g = 2.60 g
Then solve the percent of water in the hydrated salt by:
% water = (mass of water / mass of hydrated salt) x 100
% water = 2.60 g / 4.72 g x 100
% water = 55.08 % in the compound
Answer:
N₂+3H₂ ⇄2NH₃ is a thermochemical reaction whereas A+BC⇄AB is not.
A+BC⇄AB is a reaction of pure a element with a compound while N₂+3H₂ ⇄2NH₃ is a reaction between two pure elements.
Explanation:
Let A+BC⇄AB be equation i and N₂+3H₂ ⇄2NH₃ be equation ii.
The two reactions differ in that ii is a thermo-chemical reaction whereas i is not. This is because energy is included in reaction ii but not included in reaction i.
Also i is a reaction of pure a element with a compound while ii is a reaction between two pure elements. The compound is BC while the pure element is A.
The mass of Ba(IO3)2 that can be dissolved in 500 ml of water at 25 degrees celcius is 2.82 g
<h3>What mass of Ba(IO3)2 can be dissolved in 500 ml of water at 25 degrees celcius?</h3>
The Ksp of Ba(IO3)2 = 1.57 × 10^-9
Molar mass of Ba(IO3)2 = 487 g/mol?
Dissociation of Ba(IO3)2 produces 3 moles of ions as follows:

![Ksp = [Ba^{2+}]*[IO_{3}^{-}]^{2}](https://tex.z-dn.net/?f=Ksp%20%3D%20%5BBa%5E%7B2%2B%7D%5D%2A%5BIO_%7B3%7D%5E%7B-%7D%5D%5E%7B2%7D)
![[Ba(IO_{3})_{2}] = \sqrt[3]{ksp} =\sqrt[3]{1.57 \times {10}^{ - 9} } \\ [Ba(IO_{3})_{2}] = 1.16 \times {10}^{-3} moldm^{-3}](https://tex.z-dn.net/?f=%5BBa%28IO_%7B3%7D%29_%7B2%7D%5D%20%3D%20%20%5Csqrt%5B3%5D%7Bksp%7D%20%3D%3C%2Fp%3E%3Cp%3E%5Csqrt%5B3%5D%7B1.57%20%5Ctimes%20%20%7B10%7D%5E%7B%20-%209%7D%20%7D%20%5C%5C%20%20%5BBa%28IO_%7B3%7D%29_%7B2%7D%5D%20%3D%201.16%20%5Ctimes%20%20%7B10%7D%5E%7B-3%7D%20moldm%5E%7B-3%7D)
moles of Ba(IO3)2 = 1.16 × 10^-3 × 0.5 = 0.58 × 10^-3 moles
mass of Ba(IO3)2 = 0.58 × 10^-3 moles × 487 = 2.82 g
Therefore, mass Ba(IO3)2 that can be dissolved in 500 ml of water at 25 degrees celcius is 2.82 g.
Learn more about mass and moles at: brainly.com/question/15374113
#SPJ12