1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
harkovskaia [24]
3 years ago
11

Simplify your answer and write it as a proper fraction improper fraction or whole number tan(b)

Mathematics
1 answer:
storchak [24]3 years ago
4 0

Answer:

where is the answer that needs to be simplified

Step-by-step explanation:

???????????

You might be interested in
X>-3 ; (-4,3) Tell wether this is the solution of the inequality.
IceJOKER [234]
Not sure what you mean by solution since that’s already simplified and inequalities don’t hav coordinate points as solution.
But -4<-3 so that point wouldn’t go into the “shaded area” of that inequality.
Hope this helps
3 0
3 years ago
Can some one help me find the 5 coordinates that's it. And I'll plug them into my equation thanks c:
avanturin [10]
(0,0), (-4,-2), (-4,3), (-9,-3), (-9,3)
7 0
3 years ago
Read 2 more answers
What is the value of y?
tatuchka [14]
X = 8
y = 40 

the two base angles are equal to each other so you would do 5x = 40 and solve for x

a triangle has 180 total degrees. 40*2 = 80 
                                                       180 - 80 = 100
                                                    2y + 20 = 100
                                                    2y = 80
                                                     y = 40

4 0
3 years ago
For the following integral, find the approximate value of the integral with 4 subdivisions using midpoint, trapezoid, and Simpso
PIT_PIT [208]

Answer:

\textsf{Midpoint rule}: \quad \dfrac{2\pi}{\sqrt[3]{2}}

\textsf{Trapezium rule}: \quad \pi

\textsf{Simpson's rule}: \quad \dfrac{4 \pi}{3}

Step-by-step explanation:

<u>Midpoint rule</u>

\displaystyle \int_{a}^{b} f(x) \:\:\text{d}x \approx h\left[f(x_{\frac{1}{2}})+f(x_{\frac{3}{2}})+...+f(x_{n-\frac{3}{2}})+f(x_{n-\frac{1}{2}})\right]\\\\ \quad \textsf{where }h=\dfrac{b-a}{n}

<u>Trapezium rule</u>

\displaystyle \int_{a}^{b} y\: \:\text{d}x \approx \dfrac{1}{2}h\left[(y_0+y_n)+2(y_1+y_2+...+y_{n-1})\right] \quad \textsf{where }h=\dfrac{b-a}{n}

<u>Simpson's rule</u>

\displaystyle \int_{a}^{b} y \:\:\text{d}x \approx \dfrac{1}{3}h\left(y_0+4y_1+2y_2+4y_3+2y_4+...+2y_{n-2}+4y_{n-1}+y_n\right)\\\\ \quad \textsf{where }h=\dfrac{b-a}{n}

<u>Given definite integral</u>:

\displaystyle \int^{2 \pi}_0 \sqrt[3]{\sin^2 (x)}\:\:\text{d}x

Therefore:

  • a = 0
  • b = 2π

Calculate the subdivisions:

\implies h=\dfrac{2 \pi - 0}{4}=\dfrac{1}{2}\pi

<u>Midpoint rule</u>

Sub-intervals are:

\left[0, \dfrac{1}{2}\pi \right], \left[\dfrac{1}{2}\pi, \pi \right], \left[\pi , \dfrac{3}{2}\pi \right], \left[\dfrac{3}{2}\pi, 2 \pi \right]

The midpoints of these sub-intervals are:

\dfrac{1}{4} \pi, \dfrac{3}{4} \pi, \dfrac{5}{4} \pi, \dfrac{7}{4} \pi

Therefore:

\begin{aligned}\displaystyle \int^{2 \pi}_0 \sqrt[3]{\sin^2 (x)}\:\:\text{d}x & \approx \dfrac{1}{2}\pi \left[f \left(\dfrac{1}{4} \pi \right)+f \left(\dfrac{3}{4} \pi \right)+f \left(\dfrac{5}{4} \pi \right)+f \left(\dfrac{7}{4} \pi \right)\right]\\\\& = \dfrac{1}{2}\pi \left[\sqrt[3]{\dfrac{1}{2}} +\sqrt[3]{\dfrac{1}{2}}+\sqrt[3]{\dfrac{1}{2}}+\sqrt[3]{\dfrac{1}{2}}\right]\\\\ & = \dfrac{2\pi}{\sqrt[3]{2}}\\\\& = 4.986967483...\end{aligned}

<u>Trapezium rule</u>

\begin{array}{| c | c | c | c | c | c |}\cline{1-6} &&&&&\\ x & 0 & \dfrac{1}{2}\pi & \pi & \dfrac{3}{2} \pi & 2 \pi \\ &&&&&\\\cline{1-6} &&&&& \\y & 0 & 1 & 0 & 1 & 0\\ &&&&&\\\cline{1-6}\end{array}

\begin{aligned}\displaystyle \int^{2 \pi}_0 \sqrt[3]{\sin^2 (x)}\:\:\text{d}x &  \approx \dfrac{1}{2} \cdot \dfrac{1}{2} \pi \left[(0+0)+2(1+0+1)\right]\\\\& = \dfrac{1}{4} \pi \left[4\right]\\\\& = \pi\end{aligned}

<u>Simpson's rule</u>

<u />

<u />\begin{aligned}\displaystyle \int^{2 \pi}_0 \sqrt[3]{\sin^2 (x)}\:\:\text{d}x & \approx \dfrac{1}{3}\cdot \dfrac{1}{2} \pi \left(0+4(1)+2(0)+4(1)+0\right)\\\\& = \dfrac{1}{3}\cdot \dfrac{1}{2} \pi \left(8\right)\\\\& = \dfrac{4}{3} \pi\end{aligned}

6 0
2 years ago
What is the area of the obtuse angle ?
Zolol [24]

Answer:C = 49 sq. units


Step-by-step explanation:

Multiply 7 by 14 to get 98

Then divide 98 by 2 to get that obtuse triangle's area; 49 sq. units

4 0
3 years ago
Other questions:
  • The frame of a bridge is constructed of triangles, as shown below.
    11·2 answers
  • What can be concluded about the distance from point B to CD?
    6·1 answer
  • Please answer this question
    6·1 answer
  • Which equation is modeled below?
    9·1 answer
  • Paloma plotted two different integers with the same absolute value on a number line. The distance between the two numbers must b
    10·2 answers
  • PLEASE HELP ME ANSWER THIS QUESTION PLEASEEEE I WILL GIVE BRAINLIST!!!!!!!!!!!!!!
    12·1 answer
  • Step by step explanation!
    12·2 answers
  • PLS HELP!! need the answer asap
    6·2 answers
  • A file that is 242 megabytes is being downloaded. If the download is 18.7% complete, how many megabytes have been downloaded? Ro
    6·1 answer
  • 1. Ms. Cedric bought a jar for 25 dimes. If she had 75
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!