Answer:
65.87 s
Explanation:
For the first time,
Applying
v² = u²+2as.............. Equation 1
Where v = final velocity, u = initial velocity, a = acceleration, s = distance
From the question,
Given: u = 0 m/s (from rest), a = 1.99 m/s², s = 60 m
Substitute these values into equation 1
v² = 0²+2(1.99)(60)
v² = 238.8
v = √238.8
v = 15.45 m/s
Therefore, time taken for the first 60 m is
t = (v-u)/a............ Equation 2
t = (15.45-0)/1.99
t = 7.77 s
For the final 40 meter,
t = (v-u)/a
Given: v = 0 m/s(decelerates), u = 15.45 m/s, a = -0.266 m/s²
Substitute into the equation above
t = (0-15.45)/-0.266
t = 58.1 seconds
Hence total time taken to cover the distance
T = 7.77+58.1
T = 65.87 s
<span>C. It is the difference in electrical potential energy between two places in an electric field.</span>
On question 30, that is a displacement- time graph (DT). On this type of graph the gradient is equal to the velocity. B has the steepest gradient, then A and finally C
Now velocity is a vector quantity so it has a direction and speed ( speed doesn't have a fixed direction.)
on the DT graph im going to assume that movement B is a positive velocity with A and C being negative.
So by ranking these: A is the most negative, C is the least negative and B has to be the greatest as it is the only positive velocity.
Q31, The same type of graph is present, by looking at the gradients we can rank the largest and smallest velocities- speeds in the case of the question.
i'll skip my working out as its the same as before:
C, B, A and then D
the same idea as on Q30 applies to Q31 part b,
D,C,B then A
<span>The energy in the body depends on the work and the type of food the person had in a 60 kg person / 40 kg person.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Hope that helped!</span>