Answer:
6s
Explanation:
Assume it is dropped from rest and the gravitational acceleration is 10
By the equation of motion under constant acceleration:

180 = (0)t+10(t^2)/2
t = 6 or -6 (rejected)
t = 6 s
To calculate the ideal mechanical advantage for an inclined plane, divide th length of the incline by the height of the incline.
Therefore; IMA = L/h
L= 3.0 m, while h =1.0 m
IMA = 3/1
= 3
Therefore the IMA of the ramp is 3
This means the ramp increases the force that is being exerted by 3 times.
Answer:
Power output = 96.506 watts
Explanation:
Drag coefficient (Cd) = 0.9
V = 7.3 m/s
Air density (ρ) = 1.225 kg/m^(3)
Area (A) = 0.45 m^2
Let's find the drag force ;
Fd=(1/2)(Cd)(ρ)(A)(v^(2))
So Fd = (1/2)(0.9)(1.225)(0.45)(7.3^(2)) = 13.22N
Drag power = Drag Force x Drag velocity.
Thus drag power, = 13.22 x 7.3 = 96.506 watts