The equilibrium will shift to the left or the backward reaction since addition of <span>CH3COONa will add more CH3COO- ions to the solution. The formation of reactants are promoted.</span>
Answer:
Correct answer is (D). as a weak acid it can cross the membrane when in its uncharged form.
Explanation:
Aspirin (acetylsalicylic acid, ASA) is an analgesic and anti-inflammatory agent use in the treatment of gentle to moderate pain, inflammation and fever. It is absorb in the stomach and intestine in an unchanged form.
Answer:
C) to show that atoms are conserved in chemical reactions
Explanation:
When writing a chemical reaction, we should always consider the Mass Conservation Law, which basically states that; in an isolated system; the total mass should remain constant, this is, the total mass of the reactives should be equal to the total mass of the products
For this case, we should add the apporpiate coefficients in order to be in compliance with this law:
2H₂ + O₂ → 2H₂O
So, we can check the above statement:
For reactives (left side):
4H
2O
For product (right side):
4H
2O
Convert Mg to grams
1g =1000mg what about 3.91 Mg
= 3.91mg x 1g/1000mg= 3.91 x10^-3 g
moles= mass/molar mass
that is 3.91 x10^-3g /99 g/mol=3.95 x10^-5moles
concentration= moles / vol in liters
that is 3.95 x10^-5/100 x1000= 3.94 x10^-4M
equation for dissociation of CUCl= CUCl----> CU^+ +Cl^-
Ksp=(CU+)(CI-)
that is (3.95 x10^-4)(3.95 x10^-4)
Ksp= 1.56 x10^-7
Answer:

Explanation:
Given that:
Half life = 30 min
Where, k is rate constant
So,
The rate constant, k = 0.0231 min⁻¹
Using integrated rate law for first order kinetics as:
Where,
is the concentration at time t
is the initial concentration
Given that:
The rate constant, k = 0.0231 min⁻¹
Initial concentration
= 7.50 mg
Final concentration
= 0.25 mg
Time = ?
Applying in the above equation, we get that:-
