Atomic Mass will be 23 the new magnesium formed will be its isotope of magnesium.
We know that,
In stable condition
Number of electrons = Number of protons
Atomic number represents number of proton .
So, here number of proton is 12
Therefore, number of electron is 12
We know that -
Atomic mass = number of protons +Number of neutron
So if magnesium loses one neutron i.e. new number of neutron is 11
then its atomic mass changes.
New atomic mass will be
Atomic mass = 
Atomic mass = 23
This new element with atomic mass 23 and atomic number 12 is the isotope of magnesium.
To know more about isotopes
brainly.com/question/11291241
#SPJ4
Answer:
2Fe(s) + 3Cl2(g) → 2FeCl3(s)
Explanation:
Step 1: Data given
iron = Fe = solid = Fe(s)
chlorine = Cl2 = gas = Cl2(g)
iron(III) chloride = FeCl3 = solid = FeCl3(s)
Step 2: The unbalanced equation
Fe(s) + Cl2(g) → FeCl3(s)
Step 3: Balancing the equation
Fe(s) + Cl2(g) → FeCl3(s)
On the left we have 2x Cl (in Cl2) and on the right side we have 3x Cl (in FeCl3). To balance the amount of Cl we have to multiply Cl2 (on the left) by 3 and FeCl3 by 2.
Fe(s) + 3Cl2(g) → 2FeCl3(s)
On the left side we have 1x Fe and on the right side we have 2x Fe (in 2FeCl3). To balance the amount of Fe, we have to multiply Fe on the left side by 2. Now the equation is balanced.
2Fe(s) + 3Cl2(g) → 2FeCl3(s)
Answer:Use an excess of ethane
Explanation:
The halogenation of alkanes is a substitution reaction. All the hydrogen atoms in the alkanes could be potentially substituted. How ever the reaction can be controlled by using an excess of either the alkane or the halogen. If the aim (as it is in this question) is to minimize the yield of halogenated alkanes, an excess of the alkane (in this case, ethane) is used.
The answers yes because it consumes leaves.
Lithium Chloride is a polar compound. Lithium gives off a +1 charge and chlorine gives off a -1 charge. The chlorine adopts lithium’s extra electron and they are both put to the 8 electron goal. Because they are polar, however, a polar solvent would pull them apart further. By isolating each element in + and - concentrations.