The reaction between phosphoric acid and ammonia that produces ammonium phosphate can be written as follows:
3NH3 + H3PO4 ..................> (NH4)3PO4
From the periodic table:
molar mass of nitrogen = 14 grams
molar mass of hydrogen = 1 grams
molar mass of oxygen = 16 grams
molar mass of phosphorus = 30.9 grams
based on this:
molar mass of 3NH3 = 3 (14 + 3(1)) = 51 grams
molar mass of H3PO4 = 3(1) + 30.9 + 4(16) = 97.9 grams
molar mass of (NH4)3PO4 = 3 (14 + 4(1)) + 30.9 + 4(16) = 54 + 30.9 + 64
= 148.9 grams
Therefore, 97.9 grams of phosphoric acid is required to produced 148.9 grams of ammonium phosphate.
Thus, to know the mass of ammonium phosphate produced from 4.9 grams of phosphoric acid, we will simply use cross multiplication as follows:
amount of produced ammonium phosphate = (4.9 x 148.9) / 97.9 = 7.45 g
Answer:
The answer is Ionization energy.
Explanation:
Ionization Energy. The ionization energy tends to increase as one moves from left to right across a given period or up a group in the periodic table.
Answer:
A, C, and D
Explanation:
A-Any type of rock can change into any other type of rock by weathering and erosion.
C-Rocks change slowly over time.
D- The rock cycle shows how the three rock types relate to one another.
Its correct on edge
Answer:it will be malfunction
Explanation:
Answer:
0.0611M of HNO3
Explanation:
<em>The concentration of the NaOH solution must be 0.1198M</em>
<em />
The reaction of NaOH with HNO3 is:
NaOH + HNO3 → NaNO3 + H2O
<em>1 mole of NaOH reacts per mole of HNO3.</em>
That means the moles of NaOH used in the titration are equal to moles of HNO3.
<em>Moles HNO3:</em>
12.75mL = 0.01275L * (0.1198mol / L) = 0.0015274 moles NaOH = Moles HNO3.
In 25.00mL = 0.025L -The volume of the aliquot-:
0.00153 moles HNO3 / 0.025L =
<h3> 0.0611M of HNO3</h3>