We are given: On january 1, 2000 initial population = 67,255.
Number of people increase each year = 2935 people.
Therefore, 67,255 would be fix value and 2935 is the rate at which population increase.
Let us assume there would be t number of years after year 2000 and population P after t years is taken by function P(t).
So, we can setup an equation as
Total population after t years = Number of t years * rate of increase of population + fix given population.
In terms of function it can be written as
P(t) = t * 2935 + 67255.
Therefore, final function would be
P(t) = 2935t +67255.
So, the correct option is d.P(t) = 67255 + 2935t.
Answer:
15 ways
Step-by-step explanation:

V=(4/3)(pi)(r^3)
V=(4/3)(pi)(8^3)
V=(4/3)(pi)(512)
V=(2048/3)(pi), or around 2144.660585
We are given the expression of the equation of a circle that is x2 + y2 + 14x + 2y + 14 = 0. Using ocmpleting the squares:
x2 + y2 + 14x + 2y + 14 = 0(x+7)^2 + (y+1) ^2 = -14 + 49 + 1(x+7)^2 + (y+1) ^2 = 36 center thus is at (-7,-1) and the radius is equal ot square root of 36 equal to 6.
we have

The solution is the shaded area above the dotted line
we know that
If a point is a solution of the inequality, then the coordinates of the point must satisfy the inequality
We will verify all cases to determine the solution of the problem
<u>Case A)</u> Point 

Substitute the value of x and y in the inequality and verify

-------> is not true
therefore
the point
is not a solution of the inequality
<u>Case B)</u> Point 

Substitute the value of x and y in the inequality and verify

-------> is true
therefore
the point
is a solution of the inequality
<u>Case C)</u> Point 

Substitute the value of x and y in the inequality and verify

-------> is not true
therefore
the point
is not a solution of the inequality
<u>Case D)</u> Point 

Substitute the value of x and y in the inequality and verify

-------> is not true
therefore
the point
is not a solution of the inequality
therefore
<u>the answer is the Point B</u>

To better understand the problem see the attached figure