Here, we are required to find the relationship between balls of different mass(a measure of weight) and different volumes.
- 1. Ball A will have the greater density
- 2. Ball C and Ball D have the same density.
- 3. Ball Q will have the greater density.
- 4. Ball X and Y will have the same density
The density of an object is given as its mass per unit volume of the object.
Mathematically;.
For Case 1:
- Va = Vb and Ma = 2Mb
- D(b) = (Mb)/(Vb) and D(a) = 2(Mb)/Vb
- Therefore, the density of ball A,
- D(a) = 2D(b).
- Therefore, ball A has the greater density.
For Case 2:
- D(c) = (Mc)/(Vc) and D(d) = (1/3)Md/(1/3)Vd
- Therefore, ball C and D have the same density
For Case 3:
- Vp = 2Vq and Mp = Mq
- D(p) = (Mq)/2(Vq) and D(q) = (Mq)/Vq
- Therefore, the density of ball P is half the density of ball Q
- Therefore, ball Q has the greater density.
For case 4:
Therefore, Ball X and Ball Y have the same density.
Read more:
brainly.com/question/18110802
Question:
1) The universe is cooling which, according to the Big Bang Theory, is expected to happen as the cosmos accumulates.
2) The universe is warming which, according to the Big Bang Theory, is expected to happen as the cosmos disperses.
3) The universe is cooling which, according to the Big Bang Theory, is expected to happen as the cosmos disperses.
4) The universe is warming which, according to the Big Bang Theory, is expected to happen as the cosmos accumulates.
Answer:
The correct option is;
3) The Universe is cooling which, according to the Big Bang Theory, is expected to happen as the cosmos disperses
Explanation:
With the temperature measurement carried out using the CSIRO radio telescope, Astronomers have been able to determine a temperature difference in the universe from 5.08 Kelvin 7.2 billion light years away to 2.73 Kelvin in the Universe today, which is in support of the Big Bang theory that as the Universe expanded from a state of extreme temperature that cools down as the Universe expands or the cosmos disperses.
I only know P and V and P is pressure and V is volume