The frequency of oscillation on the frictionless floor is 28 Hz.
<h3>
Frequency of the simple harmonic motion</h3>
The frequency of the oscillation is calculated as follows;
f = (1/2π)(√k/m)
where;
- k is the spring constant
- m is mass of the block
f = (1/2π)(√7580/0.245)
f = 28 Hz
Thus, the frequency of oscillation on the frictionless floor is 28 Hz.
Learn more about frequency here: brainly.com/question/10728818
#SPJ1
Answer:
a = 0.63 m/s²
Explanation:
given,
mass of submarine = 1460-kg
upward buoyant force = 16670 N
downward resistive force = 1150 N
submarine acceleration = ?
assuming g = 10 m/s²
now,
B - (R + mg) = ma
16670 - 1150 - 1460 × 10 = 1460 × a
1460× a = 920
a = 0.63 m/s²
hence, the acceleration of submarine is equal to a = 0.63 m/s²
<span>Match the basic components of a nuclear reactor with their descriptions.
1. slows down neutrons
moderator - This is the substance that slows down fast neutrons and makes them slow neutrons which are easier to capture by the atomic nuclei so that the fission reaction can continue.
2. absorb emitted neutrons
control rods - These are rods made up of a substance that easily absorbs neutrons. Their purpose is to slow down or shut down the reaction.
3. mass of unstable atoms
nuclear fuel - The entire point of a nuclear reactor is the capture the energy released by the fission of unstable atoms. So this mass of unstable atoms is the fuel for the nuclear reactor.
4. concrete and lead enclosure
shield - This is the enclosure that prevents radiation from escaping into the general environment.
5. energy transfer medium
coolant - Since the purpose of a nuclear reactor is to generate usable energy, the coolant extracts heat from the fissioning core and that heat is generally used to boil water which in turn is used to operate turbines that power electrical generators.</span>
Answer:
The value of change in internal l energy of the gas = 1850 J
Explanation:
Work done on the gas (W) = - 1850 J
Negative sign is due to work done on the system.
From the first law we know that Q = Δ U + W ------------- (1)
Where Q = Heat transfer to the gas
Δ U = Change in internal energy of the gas
W = work done on the gas
Since it is adiabatic compression of the gas so heat transfer to the gas is zero.
⇒ Q = 0
So from equation (1)
⇒ Δ U = - W ----------------- (2)
⇒ W = - 1850 J (Given)
⇒ Δ U = - (- 1850)
⇒ Δ U = + 1850 J
This is the value of change in internal energy of the gas.
It would be d all of the above