Answer:

Explanation:
given,
refractive index of lens, n = 1.70
Radius of curvature of front surface. R₁ = 20 cm
Radius of curvature of the back surface, R₂ = 30 cm
focal length= ?

R₁ = +20 cm
R₂ = -30 cm
n = 1.70




the focal length of the lens is equal to 17.15 cm
Answers:
a) -171.402 m/s
b) 17.49 s
c) 1700.99 m
Explanation:
We can solve this problem with the following equations:
(1)
(2)
(3)
Where:
is the bomb's final jeight
is the bomb'e initial height
is the bomb's initial vertical velocity, since the airplane was moving horizontally
is the time
is the acceleration due gravity
is the bomb's range
is the bomb's initial horizontal velocity
is the bomb's fina velocity
Knowing this, let's begin with the answers:
<h3>b) Time</h3>
With the conditions given above, equation (1) is now written as:
(4)
Isolating
:
(5)
(6)
(7)
<h3>a) Final velocity</h3>
Since
, equation (3) is written as:
(8)
(9)
(10) The negative sign ony indicates the direction is downwards
<h3>c) Range</h3>
Substituting (7) in (2):
(11)
(12)
Yes, this is a true statement.
gravity is so important.
Distance is the total length covered = 2m + 3m = 5m
Displacement is his distance from original position.
Displacement = 2m + (-3)m. Representing the 3m walked back as -3.
Displacement = 2m - 3m = -1m.
So his displacement is 1m behind his original starting point.
Answer:
Now since mass of reactant is equal to mass of the product after the reaction so we can say that mass conservation is applicable here
Explanation:
As we know that zinc reacts with copper sulfate
so the reaction is given as

so here we have




Now total mass of reactant is given as

Mass of the product is given as

Now since mass of reactant is equal to mass of the product after the reaction so we can say that mass conservation is applicable here