1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Juliette [100K]
3 years ago
10

Photovoltaic energy is the conversion of _________ into electricity through a photovoltaic cell. A) sunlight B) hydropower C) wi

nd energy D) nuclear energy
Physics
1 answer:
Aleks04 [339]3 years ago
8 0
The answer is A) sunlight
You might be interested in
Effciency of a lever is never 100% or more. why?Give reason​
Troyanec [42]

Answer:

Ideally, the work output of a lever should match the work input. However, because of resistance, the output power is nearly always be less than the input power. As a result, the efficiency would go below 100\%.  

Explanation:

In an ideal lever, the size of the input and output are inversely proportional to the distances between these two forces and the fulcrum. Let D_\text{in} and D_\text{out} denote these two distances, and let F_\text{in} and F_\text{out} denote the input and the output forces. If the lever is indeed idea, then:

F_\text{in} \cdot D_\text{in} = F_\text{out} \cdot D_\text{out}.

Rearrange to obtain:

\displaystyle F_\text{in} = F_\text{out} \cdot \frac{D_\text{out}}{D_\text{in}}

Class two levers are levers where the perpendicular distance between the fulcrum and the input is greater than that between the fulcrum and the output. For this ideal lever, that means D_\text{in} > D_\text{out}, such that F_\text{in} < F_\text{out}.

Despite F_\text{in} < F_\text{out}, the amount of work required will stay the same. Let s_\text{out} denote the required linear displacement for the output force. At a distance of D_\text{out} from the fulcrum, the angular displacement of the output force would be \displaystyle \frac{s_\text{out}}{D_\text{out}}. Let s_\text{in} denote the corresponding linear displacement required for the input force. Similarly, the angular displacement of the input force would be \displaystyle \frac{s_\text{in}}{D_\text{in}}. Because both the input and the output are on the same lever, their angular displacement should be the same:

\displaystyle \frac{s_\text{in}}{D_\text{in}} =\frac{s_\text{out}}{D_\text{out}}.

Rearrange to obtain:

\displaystyle s_\text{in}=s_\text{out} \cdot \frac{D_\text{in}}{D_\text{out}}.

While increasing D_\text{in} reduce the size of the input force F_\text{in}, doing so would also increase the linear distance of the input force s_\text{in}. In other words, F_\text{in} will have to move across a longer linear distance in order to move F_\text{out} by the same s_\text{out}.

The amount of work required depends on both the size of the force and the distance traveled. Let W_\text{in} and W_\text{out} denote the input and output work. For this ideal lever:

\begin{aligned}W_\text{in} &= F_\text{in} \cdot s_\text{in} \\ &= \left(F_\text{out} \cdot \frac{D_\text{out}}{D_\text{in}}\right) \cdot \left(s_\text{out} \cdot \frac{D_\text{in}}{D_\text{out}}\right) \\ &= F_\text{out} \cdot s_\text{out} = W_\text{out}\end{aligned}.

In other words, the work input of the ideal lever is equal to the work output.

The efficiency of a machine can be measured as the percentage of work input that is converted to useful output. For this ideal lever, that ratio would be 100\%- not anything higher than that.

On the other hand, non-ideal levers take in more work than they give out. The reason is that because of resistance, F_\text{in} would be larger than ideal:

\displaystyle F_\text{in} = F_\text{out} \cdot \frac{D_\text{out}}{D_\text{in}} + F(\text{resistance}).

As a result, in real (i.e., non-ideal) levers, the work input will exceed the useful work output. The efficiency will go below 100\%,

4 0
3 years ago
The air around a pool and the water in the pool receive equal amounts of energy from the sun. Why does the air experience a grea
labwork [276]

Answer:

A

Explanation:

4 0
3 years ago
In major league baseball, the pitcher's mound is 60 feet from the batter.If a pitcher throws a 89 mph fastball, how much time el
lianna [129]
<span>Hitting can be broken down into three segments; SEE, REACT, SWING. You watch the ball in the pitcher's hand during the windup and you watch the ball leave the pitcher's hand when it is thrown and you watch the spin of the ball as it comes towards the plate. That is SEE. You determine what the pitch is (fastball, curveball, etc.), you determine where the ball is going to go and you determine whether it is headed towards an area that you think you can get good wood on it. That is REACT. You swing if you like the pitch or don't swing if you don't like the pitch. That is SWING. It doesn't make any difference whether you are playing with a tennis ball or a golf ball or a baseball. The theory and mechanics are the same. So, to answer your question I would say the more you practice the better you will be, regardless of the type of ball you use to practice with.</span>
8 0
3 years ago
I need to talk to a girl my age
Greeley [361]

Answer:

that is my question

Explanation:

you want a girl to talk your age

<h2>HOW OLD ARE YOU</h2>
6 0
3 years ago
When a garden hose with an output diameter of 20 mm is directed straight upward, the stream of water rises to a height of 0.13m
SpyIntel [72]

Answer: h = 0.52m

Explanation:

Using the equation of out flow;

A1 × V1 = A2 ×V2

Where A1 = area of the first nozzle

A2 = area of the second nozzle

V1= velocity of flow out from the first nozzle

V2 = velocity of flow out from 2nd nozzle

But AV= area of nozzle × velocity of water = volume of water per second(m³/s).

Now we can set A×V = Area of nozzle × height of rise.

Henceb A1× h1 = A2 × h2 ( note the time cancel on both sides)

D1 = 20mm= 0.02m; h1 = 0.13m

D2 = 10mm = 0.01m; h2= ?

h2 = π(D1/2)²× h1 /π(D2/2)²

h2 = (0.02/2)² × 0.13/(0.01/2)²

= (0.01)² ×0.13 /(0.005)²

= 1.3 × 10^-5/(5 × 10^-3)²

= 1.3 × 10^-5/25 × 10^-6

= (1.3/25) 10^-5 × 10^6

= 0.052× 10

= 0.52m

7 0
3 years ago
Other questions:
  • A Cessna aircraft has a liftoff speed of 120 km/h What minimum constant acceleration does the aircraft require to be airborne af
    7·1 answer
  • Where on the physical activity pyramid do sedentary activities belong?
    5·1 answer
  • An airplane changes its velocity uniformly from 150 m/s to 60 m/s in 15 s. Calculate:
    13·1 answer
  • A 10.0 L tank contains 0.329 kg of helium at 28.0 ∘C. The molar mass of helium is 4.00 g/mol . Part A How many moles of helium a
    8·1 answer
  • 2 objects have a total momentum of 400kg m/s, they collide. Object A’s mass is5kg &amp; object B’s mass is 11kg. After the colli
    11·1 answer
  • A truck on a straight road starts from rest, accelerating at 2.00 m/s2 until it reaches a speed of 29.0 m/s. Then the truck trav
    8·1 answer
  • A 90-kg skydiver jumps from a height of 6000 m above the ground, falling head-first (pike position). The area of the diver is 0.
    6·1 answer
  • A 50N girl pushes a 10,000 N car with force of 200N. What is the force the car pushes back at the girl? *
    15·1 answer
  • Which type of energy is stored in chemical compounds and released in chemical reactions? chemical energy potential energy kineti
    10·1 answer
  • How would the period Of the pendulum different from an equivalent one on earth​
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!