Answer:
True
Explanation:
Yes.
The distance that the molecules move depends on their solubility in the solvent and the size of the molecules. Heavy molecules will travel slower and therefore travel a shorter distance in the time the chromatography is run.
We know from such things as felt tip pens that colourings can be soluble in different solvents. Water soluble felt pens have colours that are - well - water soluble. Permanent felt pens have colours that are insoluble in water but that are soluble in another solvent. This could well be alcohol.
The water soluble colours may also be soluble in alcohol. The solubility in alcohol will be different from the solubility in alcohol, and so the Rf value ( the distance travelled) will also be different.
Because of the complicated shapes of the colours, the colours may not have the same order in the Rf values in the different solvents.
<span>The pH is given by the Henderson - Hasselbalch equation:
pH = pKa + log([A-]/[HA])
pH = -log(</span><span>1.3 x 10^-5) + log(0.50/0.40)
pH = 4.98
The answer to this question is 4.98.
</span>
I think the answer is 4 carbon dioxide
Answer:
7. .........................
You can solve this by using the equation (P1V1/T1) = (P2V2/T2). Plug in 0.50 atm for P1, leave V1 as the unknown, and plug in 325 K as T1. Then substitute 1.2 atm for P2, 48 L for V2, and 320 K for T2. Solve for V1, which is 117L, but since you round using two sig figs, your answer is C, 120 L. Hope this helps!