The sum of the maximum voltages across each element in a series RLC circuit is usually greater than the maximum applied voltage because voltages are added by vector addition.
<h3>What is the Kichoff's loop rule?</h3>
Kirchhoff's loop rule states that the algebraic sum of potential differences, as well as the voltage supplied by the voltage sources and resistances, in any loop must be equal to zero.
In a series RLCcircuit, the voltages are not added by scalar addition but by vector addition.
Kirchhoff's loop rule is not violated since the voltages across different elements in the circuit are not at their maximum values.
Therefore, the sum of the maximum voltages across each element in a series RLC circuit is usually greater than the maximum applied voltage because voltages are added by vector addition.
Learn more about Kichoff's loop rule at: https://brainly.in/question/35360816
#SPJ1
Answer:
1) an observer in B 'sees the two simultaneous events
2)observer B sees that the events are not simultaneous
3) Δt = Δt₀ /√ (1 + v²/c²)
Explanation:
This is an exercise in simultaneity in special relativity. Let us remember that the speed of light is the same in all inertial systems
1) The events are at rest in the reference system S ', so as they advance at the speed of light which is constant, so it takes them the same time to arrive at the observation point B' which is at the point middle of the two events
Consequently an observer in B 'sees the two simultaneous events
2) For an observer B in system S that is fixed on the Earth, see that the event in A and B occur at the same instant, but the event in A must travel a smaller distance and the event in B must travel a greater distance since the system S 'moves with velocity + v. Therefore, since the velocity is constant, the event that travels the shortest distance is seen first.
Consequently observer B sees that the events are not simultaneous
3) let's calculate the times for each event
Δt = Δt₀ /√ (1 + v²/c²)
where t₀ is the time in the system S' which is at rest for the events
Answer:
Because the ball is dropped, we are going to assume its initial velocity is 0. With that said, acceleration is essentially the change in the velocity versus the change in time, hence the unit m/s^2, which can be thought of as “meters per second per second.” The only force acting on the ball is gravity.
That being said, you can simply divide the change in velocity by the change in time, giving you an answer of 9.8 m/s^2, which is the value of g. Even if they did not give you a time, the answer would still always be the value of g (that is if the question pertains to earth), as acceleration due to gravity is a constant.
Explanation:
Please mark brainliest
Answer:
The resultant velocity of the jet as a vector in component form 426.87 mi/hr 5.36 degrees North.
Explanation:
Vectors are quantities that have their magnitude and direction .
Sketching out the problem given, by using straight lines to represent each of the vectors, we will have a right angled triangle as shown below.
The solution can be obtained by applying Pythagoras theorem to
resolve the vectors.
Velocity of jet plane = 425 mi/hr
velocity of air = 40 mi/hr
Resultant of the vectors =
mi/hr
Vector direction =
hence the velocity is 426.87 mi/hr in a direction 5.36 degrees inclined Northward
Answer: B) Zinc will act as Anode
Explanation:
Standard reduction potential of zinc and nickel are:
Here Zinc undergoes oxidation by loss of electrons, thus act as anode as it has more negative reduction potential.
Nickel undergoes reduction by gain of electrons and thus act as cathode. as it has less negative reduction potential.
Where both
are standard reduction potentials.
As the emf is positive, the reaction is spontaneous and reaction will occur.
Thus Zinc will act as anode.