<span>Answer:
Spherical Distribution
Feedback: Correct
The stars in the halo component have highly-inclined random orbits that orbit the center of our Galaxy. The stars within the halo would therefore make up a spherical distribution of stars surrounding the center of the Galaxy. In comparison, the disk stars move in elliptical orbits, which are nearly circular and are confined to the disk of the Galaxy. Disk stars therefore have very small inclinations and do not move above or below the plane of the Galactic disk.</span>
Using the principle of floatation.
u = w............(a)
Upthrust of fluid is equal to the weight of the object.
Let the volume of the wood be V.
The upthrust u, is related to the volume submerged in water, and that is 1/5 of it volume, that is (1/5)V = 0.2V
Formula for upthrust, u = vdg
where v = volume of fluid displaced
d = density of fluid
g = acceleration due to gravity
weight, w = mg
where m = mass
g = acceleration due to gravity
From (a)
u = w
vdg = mg Cancel out g
vd = m
The v is equal to 0.2V, which is the submerged volume. Notice that the small letter v is volume of fluid displaced, and capital V is the volume of the solid.
d is density of fluid which is water in this case, 1000 kg/m³
0.2V * 1000 = m
200V = m
Hence the mass of the object is 200V kg.
But Density of solid = Mass of solid / Volume of solid
= 200V / V
= 200 kg/m³
Density of solid = 200 kg/m³
<span>c. Mammal teeth do different jobs and are different sizes and shapes</span>
I think the first question is talking about the ionic compound Sodium sulfide and it’s formula is Na2S.
And for the second question, i’m pretty sure it’d be a positive charge
Answer:

Explanation:
The law of conservation of angular momentum states that angular momentum remains constant when there is no external moment or forces applied to the system. Let assume that star can be modelled as an sphere, then:

The final angular speed is:


