Answer:
(y^2)/4 square meters
Step-by-step explanation:
For a perimeter length of x, the side of a square will be x/4 and its area will be (x/4)^2.
If one side of the square is shortened by y/2 and the adjacent side is lengthened by y/2, then the difference in side lengths will be y. The area of the resulting rectangle will be ...
(x/4 -y/2)(x/4 +y/2) = (x/4)^2 -(y/2)^2
That is, the difference in area between the square and the rectangle is ...
(x/4)^2 - ((x/4)^2 -(y/2)^2) = (y/2)^2 = y^2/4
The positive difference between the area of the square region and the area of the rectangular region is y^2/4 square meters.
Answer:
-4(-7/30)-3/5=1/3
4(-1/15)+3/5=1/3
Step-by-step explanation:
1. -4x-3/5=1/3
-4x=1/3+3/5
-4x=14/15 <- divide both sides
x= -7/30
2. 4x+3/5=1/3
4x=1/3-3/5
4x= -4/15 <-divide both sides
x= -1/15
Answer:
1. 625,000 J
2. 100 J
4. 5 kg
5. √5 ≈ 2.236 m/s
Step-by-step explanation:
You should be aware that the SI derived units of Joules are equivalent to kg·m²/s².
To reduce confusion between <em>m</em> for mass and m for meters, we'll use an <em>italic m</em> for mass.
In each case, the "find" variable is what's left after we put the numbers into the formula. It is what the question is asking for. The "given" values are the ones in the problem statement and are the values we put into the formula. The formula is the same in every case.
__
1. KE = (1/2)<em>m</em>v² = (1/2)(2000 kg)(25 m/s)² = 625,000 kg·m²/s² = 625,000 J
__
2. KE = (1/2)<em>m</em>v² = (1/2)(0.5 kg)(20 m/s)² = 100 kg·m²/s² = 100 J
__
4. KE = (1/2)<em>m</em>v²
250 J = (1/2)<em>m</em>(10 m/s)² = 50 m²/s²
(250 kg·m²/s²)/(50 m²/s²) = <em>m</em> = 5 kg
__
5. KE = (1/2)<em>m</em>v²
2000 kg·m²/s² = (1/2)(800 kg)v²
(2000 kg·m²/s²)/(400 kg) = v² = 5 m²/s²
v = √5 m/s ≈ 2.236 m/s