Answer:
E. O2
Explanation:
All substances has a simple molecular structure, where between their molecules are held by van der Waals' forces. But C must be incorrect because between the H2O2 molecules, they are mainly held by hydrogen bonds on top of van der Waals' forces. Hydrogen bonds are stronger than van der Waals' forces, so more energy is required to separate the H2O2 molecules.
In structures A and D, the molecules are polar. Their van der Waals' forces are stronger than Cl2H2 and O2, which are non-polar.
Between the Cl2H2 and O2, O2 has a smaller molecular size. The van der Waals' forces between the O2 molecules are hence the weakest. Least amount of energy is required to break the intermolecular forces between the O2 molecules therefore it has the lowest boiling point.
Yes it will react with acid.
Chemical eqn
Mg(NO3)2 + K2CO3 ----> MgCO3 + 2KNO3
Answer:
= 3.78 g H₂O
Explanation:
2C₂H₆ + 3O₂ => 4CO₂ + 6H₂O
2.1g C₂H₆ = 2.1g/30.0 g/mol = 0.07 mole ethane
3.68g O₂ = 3.68g/32 g/mol = 0.115 mole oxygen
Limiting Reactant:
A quick way to determine limiting reactant is to divide moles of reactant by its respective coefficient in the balanced molecular equation. The smaller value is the limiting reactant.
moles ethane = 0.07 mole / 2 (the coefficient in balanced equation) = 0.035
moles oxygen = 0.115 mole / 3 (the coefficient in balanced equation) = 0.038
Since the smaller value is associated with ethane, then ethane is the limiting reactant and the problem is worked from the 0.07 moles of ethane in an excess of O₂.
From the equation stoichiometry ...
2 moles C₂H₆ in an excess of O₂ => 6 moles H₂O
then 0.07 mole C₂H₆ in an excess of O₂ => 6/2(0.07 moles H₂O = 0.21 mole
Converting to grams of water produced
= 0.21 mole H₂O X 18 g/mol = 3.78 g H₂O
Answer:
183g
Explanation:
mass can't be created or destroyed so i think you just add up the total amounts of matter