The average atomic mass of the element is the sum of the products of the percentage abundance of isotope and its mass number. Therefore, for atomic mass equal to 58.933, the most abundant isotope is cobalt-59. Thus, the answer is letter C.
Butter won't melt in a fridge because of intermolecular tensions. While the bonds inside of the fat molecules are unbroken, the attractions between the fat molecules are weaker.
What intermolecular forces are present in butter?
The intermolecular forces known as London dispersion forces are the weakest and are most prominent in hydrocarbons. Due to the fact that butter molecules are hydrocarbons, London dispersion forces do exist between them.
How do intermolecular forces affect melting?
More energy is required to stop the attraction between these molecules as the intermolecular forces become more powerful. Because of this, rising intermolecular forces are accompanied with rising melting points.
Which forces are intramolecular and which are intermolecular?
Intramolecular forces are those that hold atoms together within molecules. The forces that hold molecules together are known as intermolecular forces.
Learn more about intermolecular forces: brainly.com/question/9328418
#SPJ4
Answer: The reaction is exothermic reaction as the energy of products is less than the energy of reactants.
Explanation: Exothermic reactions are defined as the reactions in which energy of the product is less than the energy of the reactants. The total energy is released in the form of heat and
for the reaction comes out to be negative.
Labeling of the parts in the diagram:
A represents the activation energy which is the energy required by reactants to cross the energy barrier to get converted to products.
E represents the potential energy of the reactants.
B represents the activated complex.
D represents the potential energy of the products.
C represents the total enthalpy change of the reaction, which comes out to be negative for exothermic reactions.
