The discipline of building hardware architectures, operating systems, and specialized algorithms for running a program on a cluster of processors is known as <u>parallel computing.</u>
<u></u>
<h3>What is Parallel Computing?</h3>
Parallel computing refers to the process of breaking down larger problems into smaller, independent, often similar parts that can be executed simultaneously by multiple processors communicating via shared memory, the results of which are combined upon completion as part of an overall algorithm. The primary goal of parallel computing is to increase available computation power for faster application processing and problem solving.
<h3>Types of parallel computing</h3>
There are generally four types of parallel computing, available from both proprietary and open source parallel computing vendors:
- Bit-level parallelism: increases processor word size, which reduces the quantity of instructions the processor must execute in order to perform an operation on variables greater than the length of the word.
- Instruction-level parallelism: the hardware approach works upon dynamic parallelism, in which the processor decides at run-time which instructions to execute in parallel; the software approach works upon static parallelism, in which the compiler decides which instructions to execute in parallel.
- Task parallelism: a form of parallelization of computer code across multiple processors that runs several different tasks at the same time on the same data.
- Superword-level parallelism: a vectorization technique that can exploit parallelism of inline code.
Learn more about parallel computing
brainly.com/question/13266117
#SPJ4
Answer: statistician automotive engineer customer service specialist data modeler broadcast technician video systems technician
Explanation:
Answer:
Client server system, packets in the network and the discussion regarding two approaches have been done. See the attached pictures.
Explanation:
See attached pictures for explanation.
Answer: squared ← number * number
Explanation:
Answer:
The space available will vary between 800 GB (100%) and 400 GB (50%) of the total disks, depending on the RAID level.
The OS will handle the RAID as a single disk.
Explanation:
Each RAID level implements parity and redundancy in a different way, so the amount of disks used for this extra information will reduce the space available for actual storage.
Usual RAID levels are:
<u>RAID 0:</u> does not implement any redundancy or parity, so you will have available 100% of the total storage: 8 x 100 GB = 800 GB
<u>RAID 1:</u> Duplicates all the information in one disk to a second disk. Space is reduced in half: 400 GB
<u>RAID 5:</u> Uses the equivalent of 1 disk of parity data distributed evenly on each disk, meaning the space available is
of the total disks:
of 800 GB = 700 GB
Writting and reading the information on a RAID storage is handled by a raid controller, either implemented in hardware or software. The OS will "see" a single disk and will read or write information as usual.