Answer:
![4x^{3} y^{2} (\sqrt[3]{4 x y})](https://tex.z-dn.net/?f=4x%5E%7B3%7D%20y%5E%7B2%7D%20%28%5Csqrt%5B3%5D%7B4%20x%20y%7D%29)
Step-by-step explanation:
Another complex expression, let's simplify it step by step...
We'll start by re-writing 256 as 4^4
![\sqrt[3]{256 x^{10} y^{7} } = \sqrt[3]{4^{4} x^{10} y^{7} }](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B256%20x%5E%7B10%7D%20y%5E%7B7%7D%20%7D%20%3D%20%5Csqrt%5B3%5D%7B4%5E%7B4%7D%20x%5E%7B10%7D%20y%5E%7B7%7D%20%7D)
Then we'll extract the 4 from the cubic root. We will then subtract 3 from the exponent (4) to get to a simple 4 inside, and a 4 outside.
![\sqrt[3]{4^{4} x^{10} y^{7} } = 4 \sqrt[3]{4 x^{10} y^{7} }](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B4%5E%7B4%7D%20x%5E%7B10%7D%20y%5E%7B7%7D%20%7D%20%3D%204%20%5Csqrt%5B3%5D%7B4%20x%5E%7B10%7D%20y%5E%7B7%7D%20%7D)
Now, we have x^10, so if we divide the exponent by the root factor, we get 10/3 = 3 1/3, which means we will extract x^9 that will become x^3 outside and x will remain inside.
![4 \sqrt[3]{4 x^{10} y^{7} } = 4x^{3} \sqrt[3]{4 x y^{7} }](https://tex.z-dn.net/?f=4%20%5Csqrt%5B3%5D%7B4%20x%5E%7B10%7D%20y%5E%7B7%7D%20%7D%20%3D%204x%5E%7B3%7D%20%5Csqrt%5B3%5D%7B4%20x%20y%5E%7B7%7D%20%7D)
For the y's we have y^7 inside the cubic root, that means the true exponent is y^(7/3)... so we can extract y^2 and 1 y will remain inside.
![4x^{3} \sqrt[3]{4 x y^{7} } = 4x^{3} y^{2} \sqrt[3]{4 x y}](https://tex.z-dn.net/?f=4x%5E%7B3%7D%20%5Csqrt%5B3%5D%7B4%20x%20y%5E%7B7%7D%20%7D%20%3D%204x%5E%7B3%7D%20y%5E%7B2%7D%20%5Csqrt%5B3%5D%7B4%20x%20y%7D)
The answer is then:
![4x^{3} y^{2} \sqrt[3]{4 x y} = 4x^{3} y^{2} (\sqrt[3]{4 x y})](https://tex.z-dn.net/?f=4x%5E%7B3%7D%20y%5E%7B2%7D%20%5Csqrt%5B3%5D%7B4%20x%20y%7D%20%3D%204x%5E%7B3%7D%20y%5E%7B2%7D%20%28%5Csqrt%5B3%5D%7B4%20x%20y%7D%29)
Step-by-step explanation:
y - 3 = -1(x- -2)
y-3 = -x -2
Y = -x +1
Probability=number of specific outcomes / total number of possible outcomes...
Since they want to know the probability of getting all of the colors the probability is just one.
The sum of all probabilities is always equal to one. In this case:
1/4+1/4+1/4+1/4=1
Answer:
Step-by-step explanation:
<u>Step 1: Set y to 15 and solve</u>
<u />

<em>Add 10 to both sides</em>
<em />

<em>Multiply both sides by 5</em>
<em />

Answer: 
Answer:
I guess option c is the answer