The speed of the toy when it hits the ground is 2.97 m/s.
The given parameters;
- mass of the toy, m = 0.1 kg
- the maximum height reached by the, h = 0.45 m
The speed of the toy before it hits the ground will be maximum. Apply the principle of conservation of mechanical energy to determine the maximum speed of the toy.
P.E = K.E

Substitute the given values and solve the speed;

Thus, the speed of the toy when it hits the ground is 2.97 m/s.
Learn more here: brainly.com/question/7562874
Answer:
(θ) = 60°
Explanation:
Given:
Speed of canoe Vc = 2 m/s
Speed of River Vr = 1 m/s
Computation:
Vc (Cosθ) = Vr
2 (Cosθ) = 1
(Cosθ) = 1 / 2
(Cosθ) = (Cos60)
(θ) = 60°
weight is vector vary from place to place
Answer:
T=26.03 N
Explanation:
Given that
Distance between poles = 12 m
Mass of block m= 4 kg
Sag distance = 5 m
Lets take tension in the clothesline is T.
The component of tension in vertical direction will be T cosθ.
By force balancing
2 T cosθ = 40
here 
θ=39.80°
2 T cos39.8 = 40
T=26.03 N