Answer:
(-1/3; 4)
Step-by-step explanation:
(-2, -1) , (-1, 6 ) and (2, 7).
x=(-2-1+2)/3= -1/3
y=(-1+6+7)/3=12/3=4
=> (-1/3; 4)
Answer:
3
Step-by-step explanation:
The radius is half of the diameter so 6/2 is 3
Answer:
k=-11
Step-by-step explanation:

if
is a factor,

Answer:
a) For the 90% confidence interval the value of
and
, with that value we can find the quantile required for the interval in the t distribution with df =3. And we can use the folloiwng excel code: "=T.INV(0.05,3)" and we got:
b) For the 99% confidence interval the value of
and
, with that value we can find the quantile required for the interval in the t distribution with df =106. And we can use the folloiwng excel code: "=T.INV(0.005,106)" and we got:
Step-by-step explanation:
Previous concepts
The t distribution (Student’s t-distribution) is a "probability distribution that is used to estimate population parameters when the sample size is small (n<30) or when the population variance is unknown".
The shape of the t distribution is determined by its degrees of freedom and when the degrees of freedom increase the t distirbution becomes a normal distribution approximately.
The degrees of freedom represent "the number of independent observations in a set of data. For example if we estimate a mean score from a single sample, the number of independent observations would be equal to the sample size minus one."
Solution to the problem
Part a
For the 90% confidence interval the value of
and
, with that value we can find the quantile required for the interval in the t distribution with df =3. And we can use the folloiwng excel code: "=T.INV(0.05,3)" and we got:
Part b
For the 99% confidence interval the value of
and
, with that value we can find the quantile required for the interval in the t distribution with df =106. And we can use the folloiwng excel code: "=T.INV(0.005,106)" and we got: