This is because U-235 decays naturally by a process known as alpha radiation. This means that it releases an alpha particle (two neutrons and two protons connected together).
Another reason that U-235 is ideal for producing nuclear power is that unlike most materials, U-235 can undergo induced fission. When a free neutron collides with a U-235 nucleus, the nucleus will usually capture the neutron and split extremely quickly. The splitting of a single U-235 atom can release roughly 200 MeV (million electron volts).
We can calculate years by using the half-life equation. It is expressed as:
A = Ao e^-kt
<span>where A is the amount left at t years, Ao is the initial concentration, and k is a constant.
</span>From the half-life data, we can calculate for k.
1/2(Ao) = Ao e^-k(1620)
<span>k = 4.28 x 10^-4
</span>
0.125 = 1 e^-<span>4.28 x 10^-4 (</span>t)
t = 4259 years
Solid - made up of tightly packed particles, which gives it a solid shape.
Gas - made up of very loose particles, giving it more freedom to roam around as a gas
Liquid - fills into whatever it gets put in, basically takes the shape of the object its in
The first shell can hold up to 2 electrons, the second shell can hold up to 8 (2 + 6) electrons, the third shell can hold up to 18 (2 + 6 + 10) and so on.