Moles of potassium permanganate = 0.0008
<h3>Further explanation </h3>
Titration is a procedure for determining the concentration of a solution by reacting with another solution which is known to be concentrated (usually a standard solution). Determination of the endpoint/equivalence point of the reaction can use indicators according to the appropriate pH range
Reaction
5Na2C2O4(aq) + 2KMnO4(aq) + 8H2SO4(aq) ---> 2MnSO4(aq) + K2SO4(aq) + 5Na2SO4(aq) + 10CO2(g) + 8H2O(1)
The end point ⇒titrant and analyte moles equal
titrant : potassium permanganate-KMnO4
analyte : sodium oxalate - Na2C2O4
so moles of KMnO4 = moles of Na2C2O4
moles of Na2C2O4(mass = 0.2640 g, MW=134 g/mol) :

From equation, mol ratio Na2C2O4 : KMnO4 = 5 : 2, so mol KMnO4 :

Group 12 Elements have two valence electrons while Group 13 Elements have three valence electrons.
Number of valence electrons tend to determine factors like reactivity. So elements with different number of valence electrons will have different properties.
That is why G12 and G13 have different properties
Answer:

Explanation:
The intermediates are the products of all the steps of the reaction pathway, with the exception of the last one. So the intermediates will be:
- N2O2 from the first step
- N2O from the second step
The list from reactant to final product:

<em>Note: the water is considered a by-product, given that is not the product of interest in this steps.</em>
Answer:
The town should find a new source of water.
Explanation:
Step 1: Convert the mass of copper to milligrams
We will use the conversion factor 1 g = 1000 mg.
0.002 g × (1000 mg/1 g) = 2 mg
Step 2: Convert the mass of solution to kilograms
We will use the conversion factor 1 kg = 1000 g.
1000 g × (1 kg/1000 g) = 1 kg
Step 3: Calculate the concentration of Cu in ppm (mg/kg)
2 mg/1 kg = 2 ppm
This is over 1.3 ppm, so the town should find a new source of water.
Answer:
Because there's nothing in space for sound to travel trough