Answer:
10
Step-by-step explanation:
The square root of the number 100 is 10.
I hope it helps! Have a great day!
Anygays-
Answer:
The stock price beyond which 0.05 of the distribution fall is $12.44.
Step-by-step explanation:
Normal Probability Distribution:
Problems of normal distributions can be solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
Mean of $8.52 with a standard deviation of $2.38
This means that 
The stock price beyond which 0.05 of the distribution fall is
This is the 100 - 5 = 95th percentile, which is X when Z has a pvalue of 0.95. So X when Z = 1.645.




The stock price beyond which 0.05 of the distribution fall is $12.44.
Answer:
O B. f(x) = 2^x
i think its true but iam not sure
hope it helps
Answer:
1. The margin of error is of 66.96 square feet.
2. The 95% confidence interval estimate for the population mean using the Student's t-distribution is between 1433.04 square feet and 1566.96 square feet
Step-by-step explanation:
The first step to solve this problem is finding how many degrees of freedom, we have. This is the sample size subtracted by 1. So
df = 22 - 1 = 21
95% confidence interval
Now, we have to find a value of T, which is found looking at the t table, with 21 degrees of freedom(y-axis) and a confidence level of
. So we have T = 2.08
The margin of error is:

In which s is the standard deviation of the sample.
The margin of error is of 66.96 square feet.
The lower end of the interval is the sample mean subtracted by M. So it is 1500 - 66.96 = 1433.04 square feet
The upper end of the interval is the sample mean added to M. So it is 1500 + 314 = 1566.96 square feet
The 95% confidence interval estimate for the population mean using the Student's t-distribution is between 1433.04 square feet and 1566.96 square feet
It is about 5249 ft.
Hope it helps!