Given:
The equation is

To find:
The number of roots and discriminant of the given equation.
Solution:
We have,

The highest degree of given equation is 2. So, the number of roots is also 2.
It can be written as

Here,
.
Discriminant of the given equation is





Since discriminant is
, which is greater than 0, therefore, the given equation has two distinct real roots.
I think you would most likely add all of them well I think
If you are looking for x then it is X = 18
Answer:
looking at the straight line, it touches the axis at (-2,0) and (6,0)
Step-by-step explanation:
Answer:
2,674.14 g
Step-by-step explanation:
Recall that the formula for radioactive decay is
N = N₀ e^(-λt)
where,
N is the amount left at time t
N₀ is the initial amount when t=0, (given as 42,784 g)
λ = coefficient of radioactive decay
= 0.693 ÷ Half Life
= 0.693 ÷ 18
= 0.0385
t = time elapsed (given as 72 years)
e = exponential constant ( approx 2.7183)
If we substitute these into our equation:
N = N₀ e^(-λt)
= (42,787) (2.7183)^[(-0.0385)(72)]
= (42,787) (2.7183)^(-2.7726)
= (42,787) (0.0625)
= 2,674.14 g