1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
s344n2d4d5 [400]
3 years ago
6

How do I solve 4x+8y=20 -4x+2y=-30

Mathematics
1 answer:
sweet-ann [11.9K]3 years ago
3 0

Answer:

i got this

Step-by-step explanation:

4x+8y=20 minus 4x both sides but dont minus

-4x         -4x

8y=20-4x divide to get y alone

8          8

y= -2x+2.5

know do it to the other side


You might be interested in
How do I cancel my subscription?
soldi70 [24.7K]

Answer: you unsubscribe from it

Step-by-step explanation:

3 0
3 years ago
The clerk at a store worked 45 hours one week.He worked an equal number of hours each day on Monday through Friday.He worked an
Lubov Fominskaja [6]

Answer:

he worked 40 hours on the the weekdays

Step-by-step explanation:

3 0
3 years ago
The probabilities of poor print quality given no printer problem, misaligned paper, high ink viscosity, or printer-head debris a
nadezda [96]

Answer and explanation:

Given : The probabilities of poor print quality given no printer problem, misaligned paper, high ink viscosity, or printer-head debris are 0, 0.3, 0.4, and 0.6, respectively.

The probabilities of no printer problem, misaligned paper, high ink viscosity, or printer-head debris are 0.8, 0.02, 0.08, and 0.1, respectively.

Let the event E denote the poor print quality.

Let the event A be the no printer problem i.e. P(A)=0.8

Let the event B be the misaligned paper i.e. P(B)=0.02

Let the event C be the high ink viscosity i.e. P(C)=0.08

Let the event D be the printer-head debris i.e. P(D)=0.1

and the probabilities of poor print quality given printers are

P(E|A)=0,\ P(E|B)=0.3,\ P(E|C)=0.4,\ P(E|D)=0.6

First we calculate the probability that print quality is poor,

P(E)=P(A)P(E|A)+P(B)P(E|B)+P(C)P(E|C)+P(D)P(E|D)

P(E)=(0)(0.8)+(0.3)(0.02)+(0.4)(0.08)+(0.6)(0.1)

P(E)=0+0.006+0.032+0.06

P(E)=0.098

a. Determine the probability of high ink viscosity given poor print quality.

P(C|E)=\frac{P(E|C)P(C)}{P(E)}

P(C|E)=\frac{0.4\times 0.08}{0.098}

P(C|E)=\frac{0.032}{0.098}

P(C|E)=0.3265

b. Given poor print quality, what problem is most likely?

Probability of no printer problem given poor quality is

P(A|E)=\frac{P(E|A)P(A)}{P(E)}

P(A|E)=\frac{0\times 0.8}{0.098}

P(A|E)=\frac{0}{0.098}

P(A|E)=0

Probability of misaligned paper given poor quality is

P(B|E)=\frac{P(E|B)P(B)}{P(E)}

P(B|E)=\frac{0.3\times 0.02}{0.098}

P(B|E)=\frac{0.006}{0.098}

P(B|E)=0.0612

Probability of printer-head debris given poor quality is

P(D|E)=\frac{P(E|D)P(D)}{P(E)}

P(D|E)=\frac{0.6\times 0.1}{0.098}

P(D|E)=\frac{0.06}{0.098}

P(D|E)=0.6122

From the above conditional probabilities,

The printer-head debris problem is most likely given that print quality is poor.

3 0
3 years ago
Read 2 more answers
If y varies directly with x and x=4 when, y=20, find k, the constant of variation.
Alborosie
Direct variation means [ y = k x ]

Given . . . 20 = k 4

k = 20/4 = <u>5 .</u>


4 0
3 years ago
Caleb bought a boogie board and used a coupon for $8.50 off of the cost. Fill in the box with the expression that represents the
jenyasd209 [6]
I think this is the answer sorry if I'm wrong
(B)-8.50=T

4 0
3 years ago
Other questions:
  • Joan Arlington has twice as much money invested at 5% simple annual interest as she does at 4%. if her yearly income from the tw
    6·1 answer
  • A cylinder has a volume of 320 pi cu. in. and a height of 5". Find the radius of the cylinder.
    11·1 answer
  • What is the solution to the equation below? <br> 5 - n/2 = 12
    11·1 answer
  • 10. (01.05)
    12·2 answers
  • Which of the following quantities are inversely proportional? WILL GIVE BRAINIEST
    11·2 answers
  • IF YOU DON'T KNOW, DON'T ANSWER
    5·2 answers
  • David ran one half of a mile down the high school track and then walked one third of a mile
    7·1 answer
  • PLEASE HELP
    10·1 answer
  • "Write an absolute value equation that has the given solution."
    14·2 answers
  • In January 2020 oil price was $1283 but in April 2020 the price was $1351. What is the percent increase or decrease
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!