Salt watersodaorange juice<span>coffee</span>
Answer:

Explanation:
Hello,
In this case, for the given reaction at equilibrium:

We can write the law of mass action as:
![Keq=\frac{[CH_3OH]}{[CO][H_2]^2}](https://tex.z-dn.net/?f=Keq%3D%5Cfrac%7B%5BCH_3OH%5D%7D%7B%5BCO%5D%5BH_2%5D%5E2%7D)
That in terms of the change
due to the reaction extent we can write:
![Keq=\frac{x}{([CO]_0-x)([H_2]_0-2x)^2}](https://tex.z-dn.net/?f=Keq%3D%5Cfrac%7Bx%7D%7B%28%5BCO%5D_0-x%29%28%5BH_2%5D_0-2x%29%5E2%7D)
Nevertheless, for the carbon monoxide, we can directly compute
as shown below:
![[CO]_0=\frac{0.45mol}{1.00L}=0.45M\\](https://tex.z-dn.net/?f=%5BCO%5D_0%3D%5Cfrac%7B0.45mol%7D%7B1.00L%7D%3D0.45M%5C%5C)
![[H_2]_0=\frac{0.57mol}{1.00L}=0.57M\\](https://tex.z-dn.net/?f=%5BH_2%5D_0%3D%5Cfrac%7B0.57mol%7D%7B1.00L%7D%3D0.57M%5C%5C)
![[CO]_{eq}=\frac{0.28mol}{1.00L}=0.28M\\](https://tex.z-dn.net/?f=%5BCO%5D_%7Beq%7D%3D%5Cfrac%7B0.28mol%7D%7B1.00L%7D%3D0.28M%5C%5C)
![x=[CO]_0-[CO]_{eq}=0.45M-0.28M=0.17M](https://tex.z-dn.net/?f=x%3D%5BCO%5D_0-%5BCO%5D_%7Beq%7D%3D0.45M-0.28M%3D0.17M)
Finally, we can compute the equilibrium constant:

Best regards.
Nascent oxygen has much higher reactivity than the oxygen bubbled through the reaction mixture. It doesn't stay nascent for long (you are right about it being converted quick to just O2), which is why it has to be generated in situ
Sound waves are waves of growing larger and smaller, making it seem elastic through substances, such as air.
The correct description for an atom of helium would be option C. An atom of helium has its valence electrons in its first energy level, it wouldn't and can't satisfy the Octet rule as it only has 2 electrons, but with 2, it has a full shell, as the first energy level can hold only 2 electrons.