Answer : The final volume of gas will be, 26.3 mL
Explanation :
Combined gas law is the combination of Boyle's law, Charles's law and Gay-Lussac's law.
The combined gas equation is,

where,
= initial pressure of gas = 0.974 atm
= final pressure of gas = 0.993 atm
= initial volume of gas = 27.5 mL
= final volume of gas = ?
= initial temperature of gas = 
= final temperature of gas = 
Now put all the given values in the above equation, we get:


Therefore, the final volume of gas will be, 26.3 mL
Answer: D.
Explanation: A chemical reaction is said to be in a state of equilibrium when the rate of the forward reaction equals the rate of the backward reaction, thus, there is no net change in the concentration of reactants and products.
Answer:
Mass = 5.92 g
Explanation:
Given data:
Volume of O₂ = 4.15 mol
Temperature and pressure = standard
Mass in gram = ?
Solution:
The given problem will be solve by using general gas equation,
PV = nRT
P= Pressure
V = volume
n = number of moles
R = general gas constant = 0.0821 atm.L/ mol.K
T = temperature in kelvin
By putting values,
1 atm × 4.15L = n ×0.0821 atm.L /mol.K × 273.15 k
4.15 atm.L = n ×22.43 atm.L /mol
n = 4.15 atm.L / 22.43 atm.L /mol
n = 0.185 mol
Mass in gram:
Mas = number of moles × molar mass
Mass = 0.185 mol ×32g/mol
Mass = 5.92 g
Answer:
HI (aq) → H⁺ (aq) + I⁻ (aq)
HI (aq) + H₂O(l) → H₃O⁺ (aq) + I⁻ (aq)
Explanation:
The Arrhenius acid concept indicates that a substance behaves like acid if it produces hydrogen ions H⁺ or hydronium ions H₃O⁺ in water. A substance will be classified as a base if it produces OH⁻ hydroxide ions in water. This way of defining acids and bases works well for aqueous solutions.
When we mix HI (aq) and water, we are increasing [H₃O⁺]
HI (aq) → H⁺ (aq) + I⁻ (aq)
HI (aq) + H₂O(l) → H₃O⁺ (aq) + I⁻ (aq)