To solve this problem, we use Beer's Law: A= ε.l.c
A is the absorbance- 0,558
<span>ε is</span> the molar absorptivity- is <span>15000 </span><span><span>L⋅mol-1</span><span>cm-1</span></span>
<span>l is </span>the length of the cuvette- 1 cm
<span>c is</span> the molar concentration
Applying the formula,
0,558= 15000 x 1 x c
0,558/15000= c
c= <span>3.72×<span>10⁻⁵ </span> <span>mol⋅L<span>⁻¹</span></span></span>
<span />
Answer is: the percent by mass of NaHCO₃ is 2,43%.
m(NaHCO₃) = 10 g.
V(H₂O) = 400 ml.
d(H₂O) = 1 g/ml.
m(H₂O) = V(H₂O) · d(H₂O).
m(H₂O) = 400 ml · 1 g/ml.
m(H₂O) = 400 g.
m(solution) = m(H₂O) + m(NaHCO₃).
m(solution) = 400 g + 10 g.
m(solution) = 410 g.
ω(NaHCO₃) = 10 g ÷ 410 g · 100%.
ω(NaHCO₃) = 2,43 %
Answer:
95.7 g CO to the nearest tenth.
Explanation:
2C + O2 ---> 2CO
Using relative atomic masses:
24 g C produces 2*12 + 2*16 g CO.
So 41 g produces ( (2*12 + 2*16) * 41 ) / 24
= 95.7 g CO,
Answer:
<u><em>Arrhenius Acid:</em></u>
According to Arrhenius concept, Acids are proton donors.
Since H₂SO₄ have a proton (H⁺ ion) and it can donate it to be made a sulphate ion, So it is an Arrhenius acid.
See the following reaction =>
<u><em>H₂SO₄ + H₂O => HSO₄ + H₃O⁺</em></u>
<u><em>Arrhenius Base:</em></u>
An Arrhenius base is a a proton acceptor.
KOH accepts the proton to to made to KOH₂ and a proton acceptor.
See the following reaction =>
<u><em>KOH + H₂o => KOH₂ + OH⁻</em></u>
<u><em></em></u>
3 and 4 because the other two answers are different species.