Answer:
The stability of atoms depends on whether or not their outer-most shell is filled with electrons. If the outer shell is filled, the atom is stable. Atoms with unfilled outer shells are unstable, and will usually form chemical bonds with other atoms to achieve stability.
Explanation:
I believe the best answer to that question wud be D. I cud b wrong
Empirical formula is the simplest ratio of whole numbers of components in a compound
molecular formula is the actual ratio of components in a compound .
the molecular formula for the compounds given are as follows
ethyne - C₂H₂
ethene - C₂H₄
ethane - C₂H₆
methane - CH₄
the actual ratios of the elements simplified ratio
C : H C : H
ethyne 2:2 1:1
ethene 2:4 1:2
ethane 2:6 1:3
methane 1:4 1:4
the only compound where the actual ratio is equal to the simplified ratio is methane
therefore in methane molecular formula CH₄ is the same as empirical formula CH₄
Answer:
The new pressure is 53.3 kPa
Explanation:
This problem can be solved by this law. when the volume remains constant, pressure changes directly proportional as the Aboslute T° is modified.
T° increase → Pressure increase
T° decrease → Pressure decrease
In this case, temperature was really decreased. So the pressure must be lower.
P₁ / T₁ = P₂ / T₂
80 kPa / 300K = P₂/200K
(80 kPa / 300K) . 200 K = P₂ → 53.3 kPa
The molarity of a solution that contains 35.00 g of CuSO4 dissolved in 250.0 mL of water is 0.88M.
<h3>How to calculate molarity?</h3>
The molarity of a solution can be calculated using the following formula:
Molarity = no of moles/volume
According to this question, a solution consists of 35.00 g of CuSO4 dissolved in 250.0 mL of water.
no.of moles of CuSO4 = 35g ÷ 159.6g/mol
no. of moles of CuSO4 = 0.22 moles
Therefore; molarity of CuSO4 solution is calculated as follows:
M = 0.22 ÷ 0.25
M = 0.88M
Therefore, the molarity of a solution that contains 35.00 g of CuSO4 dissolved in 250.0 mL of water is 0.88M.
Learn more about molarity at: brainly.com/question/12127540