Answer:
f(x) = (x - 3)(x + 1) → Corresponds with the first (raised higher ) ∪ shaped graph
f(x) = -2(x - 1)((x + 3) → Corresponds with the ∩ shaped graph
f(x) = 0.5(x - 6)((x + 2) → Corresponds with the second (lower) ∪ shaped graph
Step-by-step explanation:
For the function f(x) = (x - 3)(x + 1)
We have;
When x = 0, y = -3
When y = 0 x = 3 or -1
Comparing with the graphs, it best suits the first ∪ shaped graph that rises here than the other ∪ shaped graph
For the function;
f(x) = -2(x - 1)((x + 3)
When x = 0, y = 6
When y = 0, x = 1 or -3
Which corresponds with the ∩ shaped graph
For the function;
f(x) = 2(x + 6)((x - 2)
When x = 0, y = -24
When y = 0, x = -6 or 2
Graph not included
For the function;
f(x) = 0.5(x - 6)((x + 2)
When x = 0, y = -6
When y = 0, x = 6 or -2
Which best suits the second ∪ shaped graph that is lower than the other (first) ∪ shaped graph
For the function;
f(x) = 0.5(x + 6)((x - 2)
When x = 0, y = -6
When y = 0, x = -6 or 2
Graph not included
For the function;
f(x) = (x + 3)((x - 1)
When x = 0, y = -3
When y = 0, x = -3 or 1
Graph not included
Store A = 15%
Store B = 1/5 = 20%
20-15 = 5%
Store B is reducing by 5% more, so c
The equation would be (3+√-16)(6-√-64)
A negative square root can not be a real number, meaning that we have to use the imaginary number.
(3+4i)(6-8i)
How to multiply imaginary numbers...
Treat this like an equation looking like (x-a)(y-b)
Use FOIL
(3+4i)(6-8i)
= 18-24i+24i-32i²
= 18-32i² (i²= -1 because i= √-1)
= 18- (-32)
= 18 + 32
= 50