Answer:
Step-by-step explanation:
a.
£100
1:3
1+3=4
1/4×£100
=£25
3/4×£100
=£75
b.
£80
3:5
3+5=8
3/8×£80
=£30
5/8×£80
=£50
C.
£250
2:3:5
2+3+5=10
2/10×£250
=£50
3/10×£250
=£75
5/10×£250
=£125
I think the answer is letter D.
:) have a good day
Answer:
landslide
Step-by-step explanation:
MARK AS BRAINLEST!!!
Answer:
Step-by-step explanation:
answer to the question:
download it here! bit.lif.123214
im kidding. im not one of the virus givers xdd. but they do need to be stopped
(tan²(<em>θ</em>) cos²(<em>θ</em>) - 1) / (1 + cos(2<em>θ</em>))
Recall that
tan(<em>θ</em>) = sin(<em>θ</em>) / cos(<em>θ</em>)
so cos²(<em>θ</em>) cancels with the cos²(<em>θ</em>) in the tan²(<em>θ</em>) term:
(sin²(<em>θ</em>) - 1) / (1 + cos(2<em>θ</em>))
Recall the double angle identity for cosine,
cos(2<em>θ</em>) = 2 cos²(<em>θ</em>) - 1
so the 1 in the denominator also vanishes:
(sin²(<em>θ</em>) - 1) / (2 cos²(<em>θ</em>))
Recall the Pythagorean identity,
cos²(<em>θ</em>) + sin²(<em>θ</em>) = 1
which means
sin²(<em>θ</em>) - 1 = -cos²(<em>θ</em>):
-cos²(<em>θ</em>) / (2 cos²(<em>θ</em>))
Cancel the cos²(<em>θ</em>) terms to end up with
(tan²(<em>θ</em>) cos²(<em>θ</em>) - 1) / (1 + cos(2<em>θ</em>)) = -1/2