Considering the following;
I. Heat is not readily available to all living cells.
II. Heat at excessive amounts denatures proteins.
III. Heat does not provide the activation energy for their reactions.
IV. When a critical temperature is reached, proteins no longer function
Answer;
I and IV
Explanation;
Living cells cannot use heat to provide the activation energy for biochemical reactions because heat is not readily available to all living cells and also when a critical temperature is reached, proteins no longer function.
Too much heat can kill an organism by rendering its organelles, cells, tissues and organs permanently inoperable and un-salvageable. The same process can be observed in tissues at low temperatures, and is the cause of frostbite. This is because enzymes are denatured by high temperature and inactivated by low.
Answer:
A Mutation is when a DNA gene is damaged or changed in a way that changes the genetic message carried by that gene.
Explanation:Mutations are sometimes good and sometimes bad it can also cause genetic variation which increases the survival of a species
Blood type doesn't fall into the category of dominant/recessive genes exactly; rather it combines this with the properties of incomplete dominance. Ignoring the Rh factor, there are 3 alleles for blood type, I^a,I^b, and i. You will be type A if you have I^a I^a or I^a i and type B if you have I^b I^b or I^b i. You can also get type AB by having the combination I^a I^b or be type O if you have i i. If you need to use dominant/recessive, you can say the A and B allele are dominant over the O allele and codominant with one another.
Charlee Darwin <span>t is credited with the idea of evolution and the theory natural selection.</span>
Answer:
RNA
Explanation:
Transcription is the second stage of central dogma of life (1. replication, 2. <u>transcription</u>, 3. translation).
During transcription, DNA (which is already replicated) is transcribed to RNA. This is because, the genetic information is present within nucleus and thus it is required to be transported outside the nucleus in order to perform key enzymatic functions. Therefore, transcription takes place and the genetic information travels outside in the form of RNA, where ribosomes decode this message to form proteins. The ribosomes make proteins (translation) required for enzymatic functions.