Step-by-step explanation:
solution.
if variable d increases then w reduces
w=k.u ×1/d
=ku/d
therefore w=k.u/d
I'm not sure Google it tho might help
Answer:
15) K'(t) = 5[5^(t)•In 5] - 2[3^(t)•In 3]
19) P'(w) = 2e^(w) - (1/5)[2^(w)•In 2]
20) Q'(w) = -6w^(-3) - (2/5)w^(-7/5) - ¼w^(-¾)
Step-by-step explanation:
We are to find the derivative of the questions pointed out.
15) K(t) = 5(5^(t)) - 2(3^(t))
Using implicit differentiation, we have;
K'(t) = 5[5^(t)•In 5] - 2[3^(t)•In 3]
19) P(w) = 2e^(w) - (2^(w))/5
P'(w) = 2e^(w) - (1/5)[2^(w)•In 2]
20) Q(W) = 3w^(-2) + w^(-2/5) - w^(¼)
Q'(w) = -6w^(-2 - 1) + (-2/5)w^(-2/5 - 1) - ¼w^(¼ - 1)
Q'(w) = -6w^(-3) - (2/5)w^(-7/5) - ¼w^(-¾)
Answer:
2112 minutes OR 126720 Seconds
Step-by-step explanation:
35.2 = 1
? = 3600
I hope this helps
I didn't quite get what u meant by exponential form of the function but here