well, Matti's house is a triangular prism, and to get the volume of it, we simply get the area of the triangle upfront and multiply by its length of 15.

Answer:
The brainly terms of service states that you can not use Brainly for tests or exams. Please do not do this.
Step-by-step explanation:
The question is somewhat poorly posed because the equation doesn't involve <em>θ</em> at all. I assume the author meant to use <em>x</em>.
sec(<em>x</em>) = csc(<em>x</em>)
By definition of secant and cosecant,
1/cos(<em>x</em>) = 1/sin(<em>x</em>)
Multiply both sides by sin(<em>x</em>) :
sin(<em>x</em>)/cos(<em>x</em>) = sin(<em>x</em>)/sin(<em>x</em>)
As long as sin(<em>x</em>) ≠ 0, this reduces to
sin(<em>x</em>)/cos(<em>x</em>) = 1
By definition of tangent,
tan(<em>x</em>) = 1
Solve for <em>x</em> :
<em>x</em> = arctan(1) + <em>nπ</em>
<em>x</em> = <em>π</em>/4 + <em>nπ</em>
(where <em>n</em> is any integer)
In the interval 0 ≤ <em>x</em> ≤ 2<em>π</em>, you get 2 solutions when <em>n</em> = 0 and <em>n</em> = 1 of
<em>x</em> = <em>π</em>/4 <u>or</u> <em>x</em> = 5<em>π</em>/4
The coordinates of triangle U'V'W' include U'(8, 3), V'(4, -8) and W'(-8, -6) and this is represented by graph A shown in the image attached below.
<h3>What is a transformation?</h3>
A transformation can be defined as the movement of a point on a cartesian coordinate from its original (initial) position to a new location.
<h3>The types of transformation.</h3>
In Geometry, there are different types of transformation and these include the following:
Based on the information provided, triangle UVW would be rotated counterclockwise through an angle of 270 degree at origin to produce triangle U'V'W', we have:
![\left[\begin{array}{ccc}0&1\\-1&0\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%261%5C%5C-1%260%5Cend%7Barray%7D%5Cright%5D)
Therefore, the image of triangle UVW would be given by this matrix:
![\left[\begin{array}{ccc}-3&8&6\\8&4&-8\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-3%268%266%5C%5C8%264%26-8%5Cend%7Barray%7D%5Cright%5D)
Image = ![\left[\begin{array}{ccc}8&4&-8\\3&-8&-6\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D8%264%26-8%5C%5C3%26-8%26-6%5Cend%7Barray%7D%5Cright%5D)
Based on the image above, we can logically deduce that the coordinates of triangle U'V'W' include U'(8, 3), V'(4, -8) and W'(-8, -6) and this is represented by graph A shown in the image attached below.
Read more on transformations here: brainly.com/question/12518192
#SPJ1
Considering there is a function (relationship) and that it is linear, the distance will change proportionally to time constantly. In other words, we are taking the speed to be constant throughout the journey.
If we let:
t = time (min's) driving
d = distance (miles) from destination
Then we can represent the above information as:
t = 40: d = 59
t = 52: d = 50
If we think of this as a graph, we can think of the x-axis representing time and the y-axis representing the distance to the destination. Being linear, the function will be a line, i.e. it will have a constant gradient. If you were plot the two points inferred from the information and connect the two dots, you will get a declining line (one with a negative gradient) representing the inversely proportional relationship or equally, the negative correlation between the time driving and the distance to the destination. The equation of this line will be the linear function that relates time and the distance to the destination. To find this linear function, we do as follows:
Find the gradient (m) of the line:
m = Δy/Δx
In this case, the x-values are t-values and our y-values are d-values, so:
Δy = Δd
= 50 - 59
= -9
Δx = Δt
= 52 - 40
= 12
m = -9/12 = -3/4
Note: m is equivalent to speed with units: d/t
Use formula to find function and rearrange to give it in the desired format:
y - y₁ = m(x - x₁)
d - 50 = -3/4(t - 52)
4d - 200 = -3t + 156
4d + 3t - 356 = 0
Let t = 70 to find d at the time:
4d + 3(70) - 356 = 0
4d + 210 - 356 = 0
4d - 146 = 0
4d = 146
d = 73/2 = 36.5 miles
So after 70 min's of driving, Dale will be 36.5 miles from his destination.