A) I would make the positive integer x and then form an equation.
x + 30 = x^2 - 12
x + 42 = x^2
0 = x^2 - x - 42 this can be factorised
(x - 7) ( x + 6) Therefore x = 7 or x = -6
Since the question asks for a positive integer the answer is 7.
B) two positive numbers x and y.
X - y = 3
x^2 + y^2 = 117
Use these simultaneous equations to figure out each number.
Rearrange the first equation
x = y + 3
Then substitute it into the second equation.
(y+3)^2 + y^2 = 117
y^2 + 6y + 9 + y^2 = 117
2y^2 + 6y - 108 = 0
then factorise this.
(2y - 12) (y + 9)
This means that y = 6 or y = -9 but it’s 6 because that’s the only positive number.
Use y to find x
x = y + 3
x = 6 + 3
x = 9
So the answers are x = 9 and y = 6.
Answer:
y = (x^2 + 6) / 2
Step-by-step explanation:
Original function: 
To find the inverse of a function we have to switch the x and y values and solve for y again
x = sqrt (2y-6)
To get rid of a square root we square the square root so:
x^2 = 2y-6
Add 6
x^2 + 6 = 2y
Divide by 2
y = (x^2 + 6) / 2
Answer:
You need money for employees, equipment, office space and much more. Borrowing money to start your practice is often a good idea. The debt is being used to fund something that will likely generate healthy returns, allowing you to safely make the debt payments.
hope this helps :)
Answer:
0.2514 = 25.14% probability that the diameter of a selected bearing is greater than 85 millimeters.
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this question, we have that:

Find the probability that the diameter of a selected bearing is greater than 85 millimeters.
This is 1 subtracted by the pvalue of Z when X = 85. Then



has a pvalue of 0.7486.
1 - 0.7486 = 0.2514
0.2514 = 25.14% probability that the diameter of a selected bearing is greater than 85 millimeters.