So you need to come up with a perfect square that works for the x coefficients.
like.. (2x + 2)^2
(2x+2)(2x+2) = 4x^2 + 8x + 4
Compare this to the equation given. Our perfect square has +4 instead of +23. The difference is: 23 - 4 = 19
I'm going to assume the given equation equals zero..
So, If we add subtract 19 from both sides of the equation we get the perfect square.
4x^2 + 8x + 23 - 19 = 0 - 19
4x^2 + 8x + 4 = - 19
complete the square and move 19 over..
(2x+2)^2 + 19 = 0
factor the 2 out becomes 2^2 = 4
ANSWER: 4(x+1)^2 + 19 = 0
for a short cut, the standard equation
ax^2 + bx + c = 0 becomes a(x - h)^2 + k = 0
Where "a, b, c" are the same and ..
h = -b/(2a)
k = c - b^2/(4a)
Vertex = (h, k)
this will be a minimum point when "a" is positive upward facing parabola and a maximum point when "a" is negative downward facing parabola.
Not sure but i would go bottom left corner answer
Do you mean millions? If so, please write 4,110,000, which is in terms of millions and is in standard form. Otherwise, ensure that you have copied down this problem correctly.
=3*5*7 (xyz)
=15*7 xyz
=105xyz
1:3, Because you can simplify the numbers by dividing by two.