1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Hatshy [7]
3 years ago
9

What is the gcf of 16 and 12 with work

Mathematics
1 answer:
Novay_Z [31]3 years ago
8 0

Answer:

gcf is 4 look at file I loaded for the work :)

You might be interested in
if you save 75$ every week and your friend saves 50$ a week, after how many weeks will both of you have he same amount of money
s2008m [1.1K]
If you keep getting money he wont catch up, but if not he'll get $7.14 a day up to $100. He will be pass you so you will take out some days so you both are at $75 on the 4 day of the next day you guys will be close he will have $78.56.
5 0
3 years ago
If 2.5 mol of dust particles were laid end to end along the equator, how many times would they encircle the planet? The circumfe
Natalka [10]

Answer:

They encircle the planet 3.76\times 10^{11} times.

Step-by-step explanation:

Consider the provided information.

We have 2.5 mole of dust particles and the Avogadro's number is 6.022\times 10^{23}

Thus, the number of dust particles is:

2.5\times 6.022\times 10^{23}=15.055\times 10^{23}

Diameter of a dust particles is 10μm and the circumference of earth is 40,076 km.

Convert the measurement in meters.

Diameter: 10\mu m\times \frac{10^{-6}m}{\mu m} =10^{-5}m

If we line up the particles the distance they could cover is:

15.055\times 10^{23}\times 10^{-5}=15.055\times 10^{18}=1.5055\times 10^{19}

Circumference in meters:

40,076km\times \frac{1000m}{1km}=40,076,000 m

Therefore,

\frac{1.5055\times 10^{19}}{40,076,000} = 3.76\times 10^{11}

Hence, they encircle the planet 3.76\times 10^{11} times.

8 0
3 years ago
Lim n→∞[(n + n² + n³ + .... nⁿ)/(1ⁿ + 2ⁿ + 3ⁿ +....nⁿ)]​
Schach [20]

Step-by-step explanation:

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} }

To, evaluate this limit, let we simplify numerator and denominator individually.

So, Consider Numerator

\rm :\longmapsto\:n +  {n}^{2} +  {n}^{3}  +  -  -  -  +  {n}^{n}

Clearly, if forms a Geometric progression with first term n and common ratio n respectively.

So, using Sum of n terms of GP, we get

\rm \:  =  \: \dfrac{n( {n}^{n}  - 1)}{n - 1}

\rm \:  =  \: \dfrac{ {n}^{n}  - 1}{1 -  \dfrac{1}{n} }

Now, Consider Denominator, we have

\rm :\longmapsto\: {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  -  +  {n}^{n}

can be rewritten as

\rm :\longmapsto\: {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  -  +  {(n - 1)}^{n} +   {n}^{n}

\rm \:  =  \:  {n}^{n}\bigg[1 +\bigg[{\dfrac{n - 1}{n}\bigg]}^{n} + \bigg[{\dfrac{n - 2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]

\rm \:  =  \:  {n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]

Now, Consider

\rm :\longmapsto\:\displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} }

So, on substituting the values evaluated above, we get

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{\dfrac{ {n}^{n}  - 1}{1 -  \dfrac{1}{n} }}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{ {n}^{n}  - 1}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{ {n}^{n}\bigg[1 - \dfrac{1}{ {n}^{n} } \bigg]}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{\bigg[1 - \dfrac{1}{ {n}^{n} } \bigg]}{\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{1}{\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

Now, we know that,

\red{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to \infty} \bigg[1 + \dfrac{k}{x} \bigg]^{x}  =  {e}^{k}}}}

So, using this, we get

\rm \:  =  \: \dfrac{1}{1 +  {e}^{ - 1}  + {e}^{ - 2} +  -  -  -  -  \infty }

Now, in denominator, its an infinite GP series with common ratio 1/e ( < 1 ) and first term 1, so using sum to infinite GP series, we have

\rm \:  =  \: \dfrac{1}{\dfrac{1}{1 - \dfrac{1}{e} } }

\rm \:  =  \: \dfrac{1}{\dfrac{1}{ \dfrac{e - 1}{e} } }

\rm \:  =  \: \dfrac{1}{\dfrac{e}{e - 1} }

\rm \:  =  \: \dfrac{e - 1}{e}

\rm \:  =  \: 1 - \dfrac{1}{e}

Hence,

\boxed{\tt{ \displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} } =  \frac{e - 1}{e} = 1 -  \frac{1}{e}}}

3 0
2 years ago
Evaluate the expression
dsp73

Answer: Heyaa!

<em>Your Answer Is...</em><em> </em>2

Step-by-step explanation:

<em>Simplify the radical by breaking the radicand up into a product of known factors, assuming positive real numbers.</em>

<em />

Hopefully this helps <em>you!</em>

<em />

<u>- Matthew ~</u>

7 0
2 years ago
What is the area of the kitchen floor in this floor plan?
slava [35]
First you would figure out the dimensions, which are 7 ft by 5 ft. Then, multiply those together, which equals 35 sq ft. The answer to your question is C - 35 sq ft. Hope this helps!
8 0
3 years ago
Read 2 more answers
Other questions:
  • Solve for x<br> HELLLLP​
    5·1 answer
  • An eight-sided die, which may or may not be a fair die, has four colors on it; you have been tossing the die for an hour and hav
    6·1 answer
  • CAN SOMEONE PLEASE HELP ME???
    12·1 answer
  • Natalie has 24 pairs of white tennis shoe out of 90 pairs of shoes. Use estimation to find the percent of her shoe that are whit
    6·1 answer
  • What are the coordinates of point B in the diagram?
    12·1 answer
  • Solve for b<br><br>-1/6=3 <br><br>A: B=-18<br><br>B:b=-2<br><br>C:B=2<br><br>D:b=18​
    11·1 answer
  • 6+f49-8=2)<br><img src="https://tex.z-dn.net/?f=%20%5Ctan%2845%20%5C%5C%20" id="TexFormula1" title=" \tan(45 \\ " alt=" \tan(45
    12·1 answer
  • Https://brainly.com/question/22438984 //help ASAP PLEASE
    8·2 answers
  • A line passes through the point (-4,9) and has a slope of -3/2. Write an equation in slope intercept form for this line
    6·1 answer
  • ......................
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!