Hi!!
The answer to your question is asking us to make an algerbraic equation for this situation.
H = 5V
Also, H + V = 52,000. H and V can then be solves by solving the 2 equations.
The results are 43,333 and 8,667
If you still don't understand message me
If you do plz brainlest
Answer:
I see this
"Which relation is a function?
A {(-3,4),(-3,8),(6,8)}
B {(6,4),(-3,8),(6,8)}
C {(-3,4),(3,-8),(3,8)}
D {(-3,4),(3,5),(-3,8)}"
So the answer is none of these.
Please make sure you have the correct problem.
Step-by-step explanation:
A set of points is a function if you have all your x's are different. That is, all the x's must be distinct. There can be no value of x that appears more than once.
If you look at choice A, this is not a function because the first two points share the same x, which is -3.
Choice B is not a function because the first and last point share the same x, which is 6.
Choice C is not a function because the last two points share the same x, which is 3.
Choice D is not a function because the first and last choice share the same x, which is -3.
None of your choices show a function.
If you don't have that choice you might want to verify you written the problem correctly.
This is what I see:
"Which relation is a function?
A {(-3,4),(-3,8),(6,8)}
B {(6,4),(-3,8),(6,8)}
C {(-3,4),(3,-8),(3,8)}
D {(-3,4),(3,5),(-3,8)}"
Answer:
t-shirts: 2790
profit: $12209
Step-by-step explanation:
Given the function:
p(x) = -x³ + 4x² + x
we want to maximize it.
The following criteria must be satisfied at the maximum:
dp/dx = 0
d²p/dx² < 0
dp/dx = -3x² + 8x + 1 = 0
Using quadratic formula:







d²p/dx² = -6x + 8
d²p/dx² at x = -0.12: -6(-0.12) + 8 = 8.72 > 0
d²p/dx² at x = 2.79: -6(2.79) + 8 = -8.74 < 0
Then, he should prints 2.79 thousands, that is, 2790 t-shirts to make maximum profits.
Replacing into profit equation:
p(x) = -(2.79)³ + 4(2.79)² + 2.79 = 12.209
that is, $12209
The fundamental difference between the linear and quadratic functions is observed in their respective graphs. A linear function is represented by a straight line and a quadratic function is represented by a curve called a parabola.
See file attached.