Answer:
The binding energy of a mole of the nuclei is 252KJ
Explanation:
The binding energy is the amount of energy required to separate an atom into its nuclei.
From Einstein's relations,
E = Δm
where E is the energy, Δm is the mass defect and c is the speed.
The mole of nuclei moves with the speed of light, so that;
c = 3.0 ×
m/s
Given that Δm = 0.00084Kg/mol, the binding energy is calculated as;
E = 0.00084 × 3.0 × 
= 252000
= 252KJ
The binding energy of a mole of the nuclei is 252KJ.
Answer:
The pressure of the gas is:
<u>Doubled</u>
<u></u>
Explanation:
Byole's Law = Pressure of fixed amount of gas is inversely proportional to Volume at constant temperature.
PV = k = constant
P1V1 = P2V2
<u>Charle's Law: </u> The volume of ideal gas at fixed pressure is directly proportional to Pressure.
V/T = constant
V1/T1 = V2/T2
On combinig the charles and byole's law , we get:

Now , According to question :
V2 = V1
T2 = 2(T1)
We have to find the relation between the pressure :
insert the value in the equation


V1 and V1 & T1 and T1 cancels each other,
So we get
P2 = 2 P1
So the new pressure is double of the original pressure
Answer : The ratio of the protonated to the deprotonated form of the acid is, 100
Explanation : Given,

pH = 6.0
To calculate the ratio of the protonated to the deprotonated form of the acid we are using Henderson Hesselbach equation :
![pH=pK_a+\log \frac{[Salt]}{[Acid]}](https://tex.z-dn.net/?f=pH%3DpK_a%2B%5Clog%20%5Cfrac%7B%5BSalt%5D%7D%7B%5BAcid%5D%7D)
![pH=pK_a+\log \frac{[Deprotonated]}{[Protonated]}](https://tex.z-dn.net/?f=pH%3DpK_a%2B%5Clog%20%5Cfrac%7B%5BDeprotonated%5D%7D%7B%5BProtonated%5D%7D)
Now put all the given values in this expression, we get:
![6.0=8.0+\log \frac{[Deprotonated]}{[Protonated]}](https://tex.z-dn.net/?f=6.0%3D8.0%2B%5Clog%20%5Cfrac%7B%5BDeprotonated%5D%7D%7B%5BProtonated%5D%7D)
As per question, the ratio of the protonated to the deprotonated form of the acid will be:
Therefore, the ratio of the protonated to the deprotonated form of the acid is, 100
Answer:
Silver ions 1 Hydrogen ions 2 Iron ions 3 Sodium ions 4
Explanation: