0.0005411
0.00054 is the real answer
you use the one with the least significant figures as the reference of how many to use.
101 three sig figs
001 one sig figs as well as 0.001
9.000 four sig figs
To do this, you would first add together the molar mass of all involved elements, to find how many grams are in a mole of Cu(OH)2. Keep in mind, the molar mass is equal to the atomic mass of an element in grams. For example the molar mass of copper (Cu) would be 63.55 (with 2 sig. figs.)
Therefore, now we add together the mass of all elements involved.
Cu: (63.55)+O2(15.99x2=31.98)+H2(1.01x2=2.02)
63.55+31.98+2.02= 97.55g per mole of Cu(OH)2.
Now, divide what we have by how much it takes to get a mole of the stuff.
68.1/97.55= 0.698mol Cu(OH)2
Answer: Geothermal resources are reservoirs of hot water that exist at varying temperatures and depths below the Earth's surface. Mile-or-more-deep wells can be drilled into underground reservoirs to tap steam and very hot water that can be brought to the surface for use in a variety of applications, including electricity generation, direct use, and heating and cooling. In the United States, most geothermal reservoirs are located in the western states.
Renewable—Through proper reservoir management, the rate of energy extraction can be balanced with a reservoir's natural heat recharge rate.
Baseload—Geothermal power plants produce electricity consistently, running 24 hours per day / 7 days per week, regardless of weather conditions.
Domestic—U.S. geothermal resources can be harnessed for power production without importing fuel.