Answer:
-24.76 kJ/g; -601.8 kJ/mol
Explanation:
There are two heat flows in this experiment.
Heat from reaction + heat absorbed by calorimeter = 0
q1 + q2 = 0
mΔH + CΔT = 0
Data:
m = 0.1375 g
C = 3024 J/°C
ΔT = 1.126 °C
Calculations:
0.1375ΔH + 3024 × 1.126 = 0
0.1375ΔH + 3405 = 0
0.1375ΔH = -3405
ΔH = -24 760 J/g = -24.76 kJ/g
ΔH = -24.76 kJ/g ×24.30 g/mol = -601.8 kJ/mol
The answer that best fits the blank provided above is MECHANICAL.
Answer:

Explanation:
<u><em>1. First determine the empirical formula.</em></u>
a) Base: 100 g of compound
mass atomic mass number of moles
g g/mol mol
C 26.06 12.011 26.06/12.011 = 2.17
H 13.13 1.008 13.13/1.008 = 13.03
N 60.81 14.007 60.81/14.007 = 4.34
b) Divide every number of moles by the smallest number: 2.17
mass number of moles proportion
C 2.17/2.17 1
H 13.03/2.17 6
N 4.34/2.17 2
c) Empirical formula

d) Mass of the empirical formula

<u><em>2. Molecular formula</em></u>
Since the mass of one unit of the empirical formula is equal to the molar mass of the compound, the molecular formula is the same as the empirical formula:

Explanation:
The absolute temperature is the lowest possible temperature in the universe. At this temperature, all atoms become motionless and cease to move.
The value of the absolute zero is pegged at -273.16°C.
- It is the lowest limit of the coldness of a body.
- Nothing can be colder than a body at absolute temperature.
- Many researches are underway to take advantage of this temperature value for scientific purpose.
- Thermodynamically, all process stops at this temperature.
- When a body is brought close a body at absolute zero, it can suffer cryogenic burn due to heat transfer.