Answer:
12.57
Step-by-step explanation:
Answer:
A
Step-by-step explanation:
Step 1: Write down the decimal divided by 1.
<span>Step 2: Multiply both top and bottom by 10 for every number after the decimal point. (For example, if there are two numbers after the decimal, then use 100, if there are three then use 1000, etc.) </span>
<span>answer is </span>
<span>4/9 </span>
It should be the second choice
f(x)=20(3/5)^x
Answer:
![\displaystyle V = \pi \int _0^{16}\left[10-\left(\frac{1}{8}y-2\right)\right] ^2 - \left[10 - \left(2+y^{{}^{1}\!/\!{}_{4}}\right)\right]^2\, dy](https://tex.z-dn.net/?f=%5Cdisplaystyle%20V%20%3D%20%5Cpi%20%5Cint%20_0%5E%7B16%7D%5Cleft%5B10-%5Cleft%28%5Cfrac%7B1%7D%7B8%7Dy-2%5Cright%29%5Cright%5D%20%5E2%20-%20%5Cleft%5B10%20-%20%5Cleft%282%2By%5E%7B%7B%7D%5E%7B1%7D%5C%21%2F%5C%21%7B%7D_%7B4%7D%7D%5Cright%29%5Cright%5D%5E2%5C%2C%20dy)
Step-by-step explanation:
We want to find the volume of the solid obtained by rotating the region between the two curves:

About the line <em>x</em> = 16.
Since our axis of revolution is vertical, we can use the washer method in terms of <em>y</em>.
![\displaystyle V = \pi \int _c^d[R(y)]^2 -[r(y)}]^2\, dy](https://tex.z-dn.net/?f=%5Cdisplaystyle%20V%20%3D%20%5Cpi%20%5Cint%20_c%5Ed%5BR%28y%29%5D%5E2%20-%5Br%28y%29%7D%5D%5E2%5C%2C%20dy)
Where R(y) is the outer radius and r(y) is the inner radius.
First, solve each equation in terms of <em>y: </em>
<em />
<em />
<em />
From the diagram below, we can see that the outer radius R(y) is (10 - <em>x</em>₁) and that the inner radius r(y) is (10 - <em>x</em>₂). The limits of integration will be from <em>y</em> = 0 to <em>y</em> = 16. Substitute:
![\displaystyle V = \pi \int_0^{16}\left[\underbrace{10-\left(\frac{1}{8}y+2\right)}_{R(y)}\right]^2 - \left[\underbrace{10-\left(y^{{}^{1}\!/\!{}_{4}}+2\right)}_{r(y)}\right]^2\, dy](https://tex.z-dn.net/?f=%5Cdisplaystyle%20V%20%3D%20%5Cpi%20%5Cint_0%5E%7B16%7D%5Cleft%5B%5Cunderbrace%7B10-%5Cleft%28%5Cfrac%7B1%7D%7B8%7Dy%2B2%5Cright%29%7D_%7BR%28y%29%7D%5Cright%5D%5E2%20-%20%5Cleft%5B%5Cunderbrace%7B10-%5Cleft%28y%5E%7B%7B%7D%5E%7B1%7D%5C%21%2F%5C%21%7B%7D_%7B4%7D%7D%2B2%5Cright%29%7D_%7Br%28y%29%7D%5Cright%5D%5E2%5C%2C%20dy)
Thus, our volume is:
![\displaystyle V = \pi \int _0^{16}\left[10-\left(\frac{1}{8}y-2\right)\right] ^2 - \left[10 - \left(2+y^{{}^{1}\!/\!{}_{4}}\right)\right]^2\, dy](https://tex.z-dn.net/?f=%5Cdisplaystyle%20V%20%3D%20%5Cpi%20%5Cint%20_0%5E%7B16%7D%5Cleft%5B10-%5Cleft%28%5Cfrac%7B1%7D%7B8%7Dy-2%5Cright%29%5Cright%5D%20%5E2%20-%20%5Cleft%5B10%20-%20%5Cleft%282%2By%5E%7B%7B%7D%5E%7B1%7D%5C%21%2F%5C%21%7B%7D_%7B4%7D%7D%5Cright%29%5Cright%5D%5E2%5C%2C%20dy)
*I labeled the diagram incorrectly. Let R(x) be R(y) and r(x) be r(y).