Given that the perimeter of rhombus ABCD is 20 cm, the length of the sides will be:
length=20/4=5 cm
the ratio of the diagonals is 4:3, hence suppose the common factor on the diagonals is x such that:
AC=4x and BD=3x
using Pythagorean theorem, the length of one side of the rhombus will be:
c^2=a^2+b^2
substituting our values we get:
5²=(2x)²+(1.5x)²
25=4x²+2.25x²
25=6.25x²
x²=4
x=2
hence the length of the diagonals will be:
AC=4x=4×2=8 cm
BD=3x=3×2=6 cm
Hence the area of the rhombus wll be:
Area=1/2(AC×BD)
=1/2×8×6
=24 cm²
Answer:Your left hand side evaluates to:
m+(−1)mn+(−1)m+(−1)mnp
and your right hand side evaluates to:
m+(−1)mn+(−1)m+np
After eliminating the common terms:
m+(−1)mn from both sides, we are left with showing:
(−1)m+(−1)mnp=(−1)m+np
If p=0, both sides are clearly equal, so assume p≠0, and we can (by cancellation) simply prove:
(−1)(−1)mn=(−1)n.
It should be clear that if m is even, we have equality (both sides are (−1)n), so we are down to the case where m is odd. In this case:
(−1)(−1)mn=(−1)−n=1(−1)n
Multiplying both sides by (−1)n then yields:
1=(−1)2n=[(−1)n]2 which is always true, no matter what n is
Answer:
L = 2 4/5 feet
Step-by-step explanation:
A = L x W
6 = L x 2 1/7
divide both sides by 2 1/7
6 divided by 2 1/7 = L (is the same as multiplying by the reciprocal)
6 x 7/15 = L
L = 14/5 or 2 4/5