Answer:
See explanation
Explanation:
When either pan is heated, energy is transferred via conduction. Conduction is the process by which heat is transferred through a material, the average position of the particles remaining the same.
When the pans are heated, the particles in each pan vibrate faster and transfer this energy rapidly to neighboring particles.
The pan with a thicker base has more particles in it than the pan with lighter weight base. Note that, The rate of heat transfer is inversely proportional to the thickness of the material in question. Hence, the thicker the base, the more the number of particles present and the longer the time it takes for the food to cook.
Answer:
1)Reactants
2)Light
3)An item that can increase reaction rates
4)Reactants must collide with each other
Less molecules lower the chance for collisions
The more collisions there are the higher the reaction rate
Answer: Hello i am confused are you asking a question?
Explanation:
the calculated value is Ea is 18.2 KJ and A is 12.27.
According to the exponential part in the Arrhenius equation, a reaction's rate constant rises exponentially as the activation energy falls. The rate also grows exponentially because the rate of a reaction is precisely proportional to its rate constant.
At 500K, K=0.02s−1
At 700K, k=0.07s −1
The Arrhenius equation can be used to calculate Ea and A.
RT=k=Ae Ea
lnk=lnA+(RT−Ea)
At 500 K,
ln0.02=lnA+500R−Ea
500R Ea (1) At 700K lnA=ln (0.02) + 500R
lnA = ln (0.07) + 700REa (2)
Adding (1) to (2)
700REa100R1[5Ea-7Ea] = 0.02) +500REa=0.07) +700REa.
=ln [0.02/0 .07]
Ea= 2/35×100×8.314×1.2528
Ea =18227.6J
Ea =18.2KJ
Changing the value of E an in (1),
lnA=0.02) + 500×8.314/18227.6
= (−3.9120) +4.3848
lnA=0.4728
logA=1.0889
A=antilog (1.0889)
A=12.27
Consequently, Ea is 18.2 KJ and A is 12.27.
Learn more about Arrhenius equation here-
brainly.com/question/12907018
#SPJ4