Taking ratio of W & w. ≈ 6 . w = 1/6 W. Therefore , Weight of an object on the moon is 1/6 of its weight on the earth.
The power is 833.3 W
Explanation:
First of all, we need to calculate the work done in lifting the barbell, which is equal to the change in gravitational potential energy of the barbell:

where
mg = 1250 N is the weight of the barbell
h = 2 m is the change in height
Substituting,

Now we can calculate the power, which is equal to the work done per unit time:

where
W = 2500 J is the work done
t = 3 s is the time taken
Substituting,

Learn more about power:
brainly.com/question/7956557
#LearnwithBrainly
Answer:
k = 9.6 x 10^5 N/m or 9.6 kN/m
Explanation:
First, we need to use the expression to calculate the spring constant which is:
w² = k/m
Solving for k:
k = w²*m
To get the angular velocity:
w = 2πf
The problem is giving the linear velocity of the car which is 5.7 m/s. With this we can calculate the frequency of the car:
f = V/x
f = 5.7 / 4.9 = 1.16 Hz
Now the angular velocity:
w = 2π*1.16
w = 7.29 rad/s
Finally, solving for k:
k = (7.29)² * 1800
k = 95,659.38 N/m
In two significant figures it'll ve 9.6 kN/m
The ball orbit the Earth, when launched from the theoretical cannon of Newton, is option B. it is magnetically attracted.
<h3>Newton's Cannonball:</h3>
Newton's cannonball was a hypothetical situation. Isaac Newton once proposed that gravity, which he believed to be a universal force, was the primary factor behind the planetary motion. In this experiment, Newton imagines projecting a stone or a cannonball onto the summit of a very tall mountain. The body should move away from Earth in the direction it was projected if there were no effects from gravity or air resistance.
Depending on the projectile's initial velocity and the gravitational force acting on it, the bullet will travel in a different direction. Low speeds result in a simple fallback to Earth. The Earth's surface causes the cannonball to deviate from its elliptical route.
Learn more about Newton's Cannonball here:
brainly.com/question/18776112
#SPJ1