Answer: Ali would need to drive 350 miles for the two plans to cost the same.
Step-by-step explanation:
This question can be solved by creating two equations using the information supplied in the question and then solving these simultaneously.
Let the cost be C.
Let the number of miles be M.
Let the initial payment be i.
Let the rate per mile driven be R.
Plan 1:
C = i+R×M
C = 70+0.60M ... equation 1
Plan 2:
C = i+R×M
C = 0+0.80M
C = 0.80M ...equation 2
Substituting equation 2 into equation 1:
0.80M = 70+0.60M
0.80-0.60M = 70
0.20M = 70
M = 70/0.20
M = 350 miles
Answer:
Both circles
Step-by-step explanation:
Since you have the answers given, just track their walking.
After one hour, one guy has covered 3mi and the other 4mi, which is in total 7, not 14
After 2 hours, one guy has covered 6mi and the other 8mi, which is 14mi
The algebraic way would be:
3x +4x = 14 *x being the hour
7x = 14
x =2
Answer:
Since the calculated value of z= -1.496 does not fall in the critical region z < -1.645 we conclude that the new program is effective. We fail to reject the null hypothesis .
Step-by-step explanation:
The sample proportion is p2= 7/27= 0.259
and q2= 0.74
The sample size = n= 27
The population proportion = p1= 0.4
q1= 0.6
We formulate the null and alternate hypotheses that the new program is effective
H0: p2> p1 vs Ha: p2 ≤ p1
The test statistic is
z= p2- p1/√ p1q1/n
z= 0.259-0.4/ √0.4*0.6/27
z= -0.141/0.09428
z= -1.496
The significance level ∝ is 0.05
The critical region for one tailed test is z ≤ ± 1.645
Since the calculated value of z= -1.496 does not fall in the critical region z < -1.645 we conclude that the new program is effective. We fail to reject the null hypothesis .
The right chose is -9x+3= the others are not hope this helped