Answer:
n=-6
Step-by-step explanation:
Answer:

Step-by-step explanation:
Given

Required
How it'd be displayed on a calculator
Standard calculators, today are built to always convert huge numbers or extremely small number to scientific notations;
This was done to allow the calculator fit each values on its screen
is such a big number that it'll require the calculator to display it using scientific notations;
So, basically we have to convert
to scientific notaton;
This is achieved by replacing
with 
So,
is equivalent to 
Answer:
Step-by-step explanation:
The set {1,2,3,4,5,6} has a total of 6! permutations
a. Of those 6! permutations, 5!=120 begin with 1. So first 120 numbers would contain 1 as the unit digit.
b. The next 120, including the 124th, would begin with '2'
c. Then of the 5! numbers beginning with 2, there are 4!=24 including the 124th number, which have the second digit =1
d. Of these 4! permutations beginning with 21, there are 3!=6 including the 124th permutation which have third digit 3
e. Among these 3! permutations beginning with 213, there are 2 numbers with the fourth digit =4 (121th & 122th), 2 with fourth digit 5 (numbers 123 & 124) and 2 with fourth digit 6 (numbers 125 and 126).
Lastly, of the 2! permutations beginning with 2135, there is one with 5th digit 4 (number 123) and one with 5 digit 6 (number 124).
∴ The 124th number is 213564
Similarly reversing the above procedure we can determine the position of 321546 to be 267th on the list.
Answer:
The ship is located at (3,5)
Explanation:
In the first test, the equation of the position was:
5x² - y² = 20 ...........> equation I
In the second test, the equation of the position was:
y² - 2x² = 7 ..............> equation II
This equation can be rewritten as:
y² = 2x² + 7 ............> equation III
Since the ship did not move in the duration between the two tests, therefore, the position of the ship is the same in the two tests which means that:
equation I = equation II
To get the position of the ship, we will simply need to solve equation I and equation II simultaneously and get their solution.
Substitute with equation III in equation I to solve for x as follows:
5x²-y² = 20
5x² - (2x²+7) = 20
5x² - 2y² - 7 = 20
3x² = 27
x² = 9
x = <span>± </span>√9
We are given that the ship lies in the first quadrant. This means that both its x and y coordinates are positive. This means that:
x = √9 = 3
Substitute with x in equation III to get y as follows:
y² = 2x² + 7
y² = 2(3)² + 7
y = 18 + 7
y = 25
y = +√25
y = 5
Based on the above, the position of the ship is (3,5).
Hope this helps :)
Answer:
90 or -270
Step-by-step explanation: