The first 3 are examples of the difference of 2 squares so you use the identity
a^2 - b^2 = (a + b)(a - b)
x^2 - 49 = 0
so (x + 7)(x - 7) = 0
so either x + 7 = 0 or x - 7 = 0
giving x = -7 and 7.
Number 7 reduces to 3x^2 =12, x^2 = 4 so x = +/- 2
Number 8 take out GCf (d) to give
d(d - 2) = 0 so d = 0 , 2
9 and 10 are more difficult to factor
you use the 'ac' method Google it to get more details
2x^2 - 5x + 2
multiply first coefficient by the constant at the end
that is 2 * 2 = 4
Now we want 2 numbers which when multiplied give + 4 and when added give - 5:- -1 and -4 seem promising so we write the equation as:-
2x^2 - 4x - x + 2 = 0
now factor by grouping
2x(x - 2) - 1(x - 2) = 0
(x - 2) is common so
(2x - 1)(x - 2) = 0
and 2x - 1 = 0 or x - 2 = 0 and now you can find x.
The last example is solved in the same way.
The answer is 15.525. All you have to do is divide 279.45 by 18 which gives you 15.525.
A because it can’t be 100 and it can’t be 625 and it can’t be 50 so it has to be A
Answer:
There are no like terms.
so its -7a+2b
Step-by-step explanation: